精英家教网 > 初中数学 > 题目详情
5.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE,设∠BEC=α,则tanα的值为(  )
A.$\frac{3}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{5}{4}$D.$\frac{2}{3}$

分析 先连接BC,由AB半圆的直径,可得∠C=90°,然后由勾股定理求得BC的长,又由OD⊥AC,利用垂径定理可求得CE的长,继而求得答案.

解答 解:如图,连接BC,
∵AB半圆的直径,OA=5,
∴∠C=90°,AB=2OA=10,
∵弦AC=8,
∴BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=6,
∵OD⊥AC,
∴CE=$\frac{1}{2}$AC=4,
∴tanα=$\frac{BC}{CE}$=$\frac{6}{4}$=$\frac{3}{2}$.
故选:A.

点评 此题考查了圆周角定理、垂径定理、勾股定理以及解直角三角形等知识的综合应用.注意准确作出辅助线构造出直角三角形是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.我市某一周每天最高气温统计如下:27,28,29,30,29,29,28(单位:℃).则这组数据的中位数与众数分别是(  )
A.29,28B.30,29C.28,27D.29,29

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.点(2,-3)关于x轴对称的点的坐标是(  )
A.(-3,-2)B.(2,-3)C.(2,3)D.(-2,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在四边形ABCD中,AD∥BC,AD=6cm,BC=BD=10cm,点P由
点B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向以相同的速度匀速运动,交BD于点Q,连结PE、PF,若设运动时间为t (s)(0<t≤5s).
(1)填空:PD=(10-t)cm (用含t的代数式表示);
(2)当t为何值时,P与Q的重合?
(3)在整个运动的过程中,以P、F、C、D、E为顶点的多边形的面积是否发生变化,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=-$\frac{k}{x}$(x>0)的图象经过的中点D,且与AB交于点E,连接DE
(1)求△BDE的面积
(2)若点F是OC边上一点,且△FBC∽△DEB,求点F坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.一元二次方程x2=2x的根是(  )
A.x1=0,x2=2B.x=0C.x=2D.x1=0,x2=-2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.给出下列四个说法:
①由于0.3,0.4,0.5不是勾股数,所以以0.3,0.4,0.5为边长的三角形不是直角三角形;
②由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数;
③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2
④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,其中正确的是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.正比例函数y=(2k-3)x的图象过点(3,-9),则k的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.计算:$\sqrt{3a}$×$\sqrt{12a}$(a≥0)=6a.

查看答案和解析>>

同步练习册答案