B
分析:首先过点A作AF⊥BC于F,交MN于K,设EM与DN相交于O,过点O作GH⊥BC于H,交MN于G,首先利用等腰三角形的性质,求得△ABC的高AF的值,然后由题意可得MN是△ABC的中位线,根据中位线的性质,可得MN∥BC,MN=

BC,继而可判定△OMN∽△OED,根据相似三角形对应高的比等于相似比,即可求得OH的值,然后求得阴影部分的面积.
解答:

解:过点A作AF⊥BC于F,交MN于K,设EM与DN相交于O,过点O作GH⊥BC于H,交MN于G,
∵AB=AC,
∴BF=CF=

BC=

×16=8(cm),
在Rt△ABF中,AF=

=

=6(cm),
∵M、N分别是AB,AC的中点,
∴MN是中位线,
∴MN∥BC,MN=

BC=

×16=8(cm),
∴AK=FK=

AF=3(cm),
∴NM=DE=8cm,GH⊥MN,
∵MN∥BC,
∴△OMN∽△OED,
∴OG:OH=MN:DE=1,
∴OH=

GH=

(cm),
∴S
阴影=

DE•GH=

×8×

=6(cm
2).
故选B.
点评:此题考查了相似三角形的判定与性质、等腰三角形的性质以及勾股定理等知识.此题难度适中,解题的关键是准确作出辅助线,利用数形结合思想求解.