【题目】在一块长16m,宽12m的矩形荒地上建造一个花园,要求花轩占地面积为荒地面积的一半,下面分别是小强和小颖的设计方案.
(1)你认为小强的结果对吗?请说明理由.
(2)请你帮助小颖求出图中的x.
(3)你还有其他的设计方案吗?请在图(3)中画出一个与图(1)(2)有共同特点的设计草图,并加以说明.
【答案】(1)小强的结果不对,理由见解析;(2)5.5;(3)详见解析.
【解析】
试题分析:(1)小强的结果不对.设小路宽x米,由此得到内面的矩形的长、宽分别为(16-2x)、(12-2x),再根据矩形的面积公式即可列出方程求解;(2)从图中知道,四个扇形的半径为x,根据扇形的面积公式可以用x表示它们的面积,然后根据题意即可列出方程求解;(3)有其他的方案.答案比较多,例如可以以每边中点为圆心画半圆,然后根据题意计算它们的半径即可.
试题解析:(1)小强的结果不对
设小路宽米,则
解得:
∵荒地的宽为12cm,若小路宽为12m,不合实际,故(舍去)
(2)依题意得:
(3)
第一个图,A、B、C、D为各边中点;第二个图圆心与矩形的中心重合,半径为m
科目:初中数学 来源: 题型:
【题目】如图1,在长方形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒lcm、2cm,a秒时P、Q两点同时改变速度,分别变为每秒2cm、cm(P、Q两点速度改变后一直保持此速度,直到停止),如图2是△APD的面积s(cm2)和运动时间x(秒)的图象.
(1)求出a值;
(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式;
(3)求P、Q两点都在BC边上,x为何值时P、Q两点相距3cm?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是圆O的弦,OA⊥OD,AB,OD相交于点C,且CD=BD.
(1)判断BD与圆O的位置关系,并证明你的结论;
(2)当OA=3,OC=1时,求线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为 ( ) .
A.4.8B.3C.5D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图,思考并回答问题:如图,已知:ABC
(1)按下列要求作图:取边AB、AC的中点D、E,连结线段DE;
(2)用刻度尺测量线段 DE、BC的长度分别为 ;
(3)用量角器得B与 ADE的度数分别为 ;
(4)通过(2)、(3)你发现DE与BC什么关系?请写出你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】改革开放以来,我国国民经济保持良好发展势头,国内生产总值持续较快增长, 下图是1998年~2002年国内生产总值统计图.
(1)从图中可看出1999年国内生产总值是___________.
(2)已知2002年国内生产总值比2000年增加12956亿元,2001年比2000年增加6491亿元,求2002年国内生产总值比2001年增长的百分率(结果保留两个有效数字).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
(1)四边形EFGH是怎样的四边形?证明你的结论.
(2)当四边形ABCD的对角线AC、BD满足条件 时,四边形EFGH是矩形.
(3)当四边形ABCD的对角线AC、BD满足条件 时,四边形EFGH是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.
(1)试判断线段BC、DE的数量关系,并说明理由;
(2)若BC平分∠ABD,求证线段FD是线段FG 和 FB的比例中项.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com