精英家教网 > 初中数学 > 题目详情
13.如图1,点P是线段AB上的动点(P不与A、B重合),分别以AP、BP为边向线段AB的同侧作等边△APC和等边△BPD,AD和BC交于点M.
(1)求证:AD=BC;
(2)将点P在线段AB上随意固定,再把△BPD按顺时针方向绕点P旋转一个角度α(α<60°),如图2所示,在旋转过程中,∠AMC的度数是否与α的大小有关?证明你的结论.

分析 (1)只要证明△BPC≌△DPA即可.
(2)先证明△BPC≌△DPA得到∠BCP=∠DAP,求出∠AMC的大小即可解决问题.

解答 解:(1)如图1,∵△APC和△BPD是等边三角形,
∴CP=AP,DP=PB,∠APC=∠DPB=60°,
∵∠BPC=180°-60°,∠DPA=180°-60°,
∴∠BPC=∠DPA,
在△BPC和△DPA中,
$\left\{\begin{array}{l}{CP=AP}\\{∠BPC=∠DPA}\\{DP=PB}\end{array}\right.$,
∴△BPC≌△DPA,
∴AD=BC.
(2)∠AMC的度数与α的大小无关,理由如下:
如图2,∵∠BPC=∠CPD+60°,∠DPA=∠CPD+60°,
∴∠BPC=∠DPA,
在△BPC和△DPA中,
$\left\{\begin{array}{l}{BP=DP}\\{∠BPC=∠DPA}\\{PC=PA}\end{array}\right.$,
∴△BPC≌△DPA,
∴∠BCP=∠DAP,
∴∠AMC=180°-∠MCP-∠PCA-∠MAC
=120°-∠BCP-∠MAC
=120°-(∠DAP+∠MAC)
=120°-∠PAC
=60°,
∴∠AMC的度数与α无关.

点评 本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,所以中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,D点在边CG上,四边形ABCD和CEFG均为正方形,H是AF的中点.求证:
(1)BG=DE;
(2)CH=$\frac{1}{2}$AF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在矩形ABCD中,BC=2AB.以点B为圆心,BC长为半径作弧交AD于点E,连结BE.若AB=1,则DE的长为2-$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,抛物线y=ax2+bx+c(a≠0)与直线y=kx(k≠0)相交于点M(1,1),N(3,3),且这条抛物线的对称轴为x=1.
(1)若将该抛物线平移使得其经过原点,且对称轴不变,求平移后的抛物线的表达式及k的值.
(2)设P为直线y=kx下方的抛物线上一点,求△PMN面积的最大值及此时P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在△ABC中,∠ACB=90°,AC=BC,延长AC到点D,使CD=CE.求证:
(1)△ACE≌△BCD;
(2)AE⊥BD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:
(1)($\frac{1}{3}$)-2÷(-$\frac{2}{3}$)0+(-2)3
(2)(2a-3b)2-4a(a-3b).
(3)分解因式:m4-2m2+1.
(4)解方程组$\left\{\begin{array}{l}{x-y=-2}\\{3x+2y=4}\end{array}\right.$.
(5)先化简,再求值:4x(x-1)-(2x+1)(2x-1),其中x=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列有理式中是分式的是(  )
A.$\frac{1}{5}(x+y)$B.$\frac{a}{3}$C.$\frac{ab}{2}+\frac{1}{c}$D.$\frac{x}{2}+y$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:
(1)($\sqrt{3}-\sqrt{5}$)($\sqrt{3}+\sqrt{5}$)-($\sqrt{10}-\sqrt{2}$)2
(2)$\sqrt{18}$$\sqrt{\frac{9}{2}}$-$\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}$$+(\sqrt{3}-2)^{0}$$+\sqrt{(1-\sqrt{2})^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)(π-3.14)0-|-3|+($\frac{1}{2}$)-1+(-1)2016
(2)$\frac{x-1}{{x}^{2}-4x+4}$÷$\frac{{x}^{2}-1}{{x}^{2}-4}$.

查看答案和解析>>

同步练习册答案