【题目】南中国海是中国固有领海,我渔政船经常在此海域执勤巡察.一天我渔政船停在小岛A北偏西37°方向的B处,观察A岛周边海域.据测算,渔政船距A岛的距离AB长为10海里.此时位于A岛正西方向C处的我渔船遭到某国军舰的袭扰,船长发现在其北偏东50°的方向上有我方渔政船,便发出紧急求救信号.渔政船接警后,立即沿BC航线以每小时30海里的速度前往救助,问渔政船大约需多少分钟能到达渔船所在的C处?(参考数据:sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77)
【答案】解:过B点作BD⊥AC,垂足为D.
根据题意,得:∠ABD=∠BAM=37°,∠CBD=∠BCN=50°,
在Rt△ABD中,
∵cos∠ABD= ,
∴cos37°= ≈0.80,
∴BD≈10×0.8=8(海里),
在Rt△CBD中,
∵cos∠CBD= ,
∴cos50°= ≈0.64,
∴BC≈8÷0.64=12.5(海里),
∴12.5÷30= (小时),
∴ ×60=25(分钟).
答:渔政船约25分钟到达渔船所在的C处.
【解析】首先B点作BD⊥AC,垂足为D,根据题意,得:∠ABD=∠BAM=37°,∠CBD=∠BCN=50°,然后分别在Rt△ABD与Rt△CBD中,利用余弦函数求得BD与BC的长,继而求得答案.
【考点精析】解答此题的关键在于理解关于方向角问题的相关知识,掌握指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且 = ,弦AD的延长线交切线PC于点E,连接BC.
(1)判断OB和BP的数量关系,并说明理由;
(2)若⊙O的半径为2,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:一粒米微不足道,平时在饭桌上总会毫不经意地掉下几粒,甚至有些挑食的同学把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得粒大米约重克.
尝试解决:
粒米重约多少克?
按我国现有人口亿,每年天,每人每天三餐计算,若每人每餐节约粒大米,一年大约能节约大米多少千克?(结果用科学记数法表示)
假设我们把一年节约的大米卖成钱,按每千克元计算,可卖得人民币多少元?(结果用科学记数法表示,保留到)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2﹣2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(﹣1,0),O是坐标原点,且|OC|=3|OA|
(1)求抛物线的函数表达式;
(2)直接写出直线BC的函数表达式;
(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式;
②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.
(1)若点A表示的数为0,求点B、点C表示的数;
(2)若点C表示的数为5,求点B、点A表示的数;
(3)如果点A、C表示的数互为相反数,求点B表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一般情况下不成立,但有些数可以使得它成立,例如: .我们称使得成立的一对数, 为“相伴数对”,记为.
(1)若是“相伴数对”,求的值;
(2)写出一个“相伴数对” ,其中且;
(3)若是“相伴数对”,求代数式的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数a在数轴上表示的点在原点左侧,距离原点3个单位长度,数在数轴上表示的点在原点右侧,距离原点4个单位长度,c和d互为倒数,m和n互为相反数,是最大的负整数,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com