如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,
给出下列命题:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的两根分别为﹣3和1;
⑤8a+c>0.其中正确的命题是 .
①③④⑤
解析试题分析:由抛物线的开口方向判断a的符号;然后结合对称轴判断b的符号;根据抛物线的对称轴、抛物线与x的一个交点可以推知与x的另一个交点的坐标;由二次函数图象上点的坐标特征可以推知x=1满足该抛物线的解析式.
解:①根据抛物线是开口方向向上可以判定a>0;
∵对称轴x=﹣=﹣1,
∴b=2a>0;
∵该抛物线与y轴交于负半轴,
∴c<0,
∴abc<0;
故本选项正确;
②由①知,b=2a;
故本选项错误;
③∵该抛物线与x轴交于点(1,0),
∴x=1满足该抛物线方程,
∴a+b+c=0;
故本选项正确;
④设该抛物线与x轴交于点(x,0)),
则由对称轴x=﹣1,得=﹣1,
解得,x=﹣3;
∴ax2+bx+c=0的两根分别为﹣3和1;
故本选项正确;
⑤根据图示知,当x=﹣4时,y>0,
∴16a﹣4b+c>0,
由①知,b=2a,
∴8a+c>0;
故本选项正确;
综合①②③④⑤,上述正确的①③④⑤;
故答案是:①③④⑤.
点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
科目:初中数学 来源: 题型:填空题
二次函数y=一x2+ax+b图象与轴交于,两点,且与轴交于点.
(1)则的形状为 ;
(2)在此抛物线上一动点,使得以四点为顶点的四边形是梯形,则点的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是 .(填正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
已知二次函数的图象如图所示,有下列5个结论:
①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的实数)。
其中正确结论的序号有 。
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
有下列4个命题:
①方程的根是和.
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,则CD=3.
③点P(x,y)的坐标x,y满足x2+y2+2x﹣2y+2=0,若点P也在的图象上,则k=﹣1.
④若实数b、c满足1+b+c>0,1﹣b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x0满足﹣1<x0<1.
上述4个命题中,真命题的序号是 .
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,二次函数y=x2+bx+c经过点(-1,0)和点(0,-3).
(1)求二次函数的表达式;
(2)如果一次函数y=4x+m的图象与二次函数的图象有且只有一个公共点,求m的值和该公共点的坐标;
(3)将二次函数图象y轴左侧部分沿y轴翻折,翻折后得到的图象与原图象剩余部分组成一个新的图象,该图象记为G,如果直线y=4x+n与图象G有3个公共点,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,2),点M(m,n)是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上,过点M作x轴的平行线交y轴于点Q,交抛物线于另一点E,直线BM交y轴于点F.
(1)求抛物线的解析式,并写出其顶点坐标;
(2)当S△MFQ:S△MEB=1:3时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:计算题
如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.
【小题1】直接写出点M及抛物线顶点P的坐标;
【小题2】求这条抛物线的解析式;
【小题3】若要搭建一个矩形“支撑架”AD- DC- CB,
使C、D点在抛物线上,A、B点在地面OM上,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com