精英家教网 > 初中数学 > 题目详情

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是   .(填正确结论的序号)

①②⑤

解析试题分析:①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,∴b2>4ac。故①正确。
②抛物线开口向上,得:a>0;
抛物线的对称轴为,b=﹣2a,故b<0;
抛物线交y轴于负半轴,得:c<0;
所以abc>0。故②正确。
③∵抛物线的对称轴为,b=﹣2a,∴2a+b=0,故2a﹣b=0。故③错误。
④根据②可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);
由函数的图象知:当x=﹣2时,y>0;即4a﹣(﹣4a)+c=8a+c>0,故④错误。
⑤根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);
当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0。故⑤正确。
综上所述,结论正确的有①②⑤。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

若根式有意义,则双曲线与抛物线的交点在第  象限.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

抛物线的顶点坐标是          

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

若关于的函数轴仅有一个公共点,则实数的值为             

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是
    .

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

若根式有意义,则双曲线与抛物线的交点在第     象限.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,
给出下列命题:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的两根分别为﹣3和1;
⑤8a+c>0.其中正确的命题是               

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).(年获利=年销售额-生产成本-投资成本)
(1)直接写出y与x之间的函数关系式;
(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
(3)若该公司希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利不低于1842元,请你确定此时销售单价的范围.在此情况下,要使产品销售量最大,销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.
(1)求这条抛物线的解析式;
(2)如图一,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;
(3)如图二,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案