精英家教网 > 初中数学 > 题目详情

【题目】一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m半期数;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′,在m′的所有可能的情况中,当|b+2cad|最小时,称此时的m′m伴随数,并规定Fm′)=a2+c22bd;例如:m2365,则m′为:365265235236,因为|6+1032|11|5+463|0|2+656|30最小,所以6523叫做2365伴随数F5236)=52+322×2×610

1)最大的四位半期数   半期数”3247伴随数   

2)已知四位数P半期数,三位数Q,且441Q4P88991,求FP')的最大值.

【答案】141927324;(242.

【解析】

1)根据“半期数”的定义分析最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192,分析3247的所有可能为,247347327324.根据题意|b+2cad|最小的数是7324,所以3247的“伴随数”是:7324

2)根据定义可知a+b=5c+d=11.再根据441Q4P=88991,可以算出P的值,从而求出FP')的最大值.

解;(1)根据题意可得最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192

3247的所有可能为,247347327324

|4+1423|=13|7+642|=7|3+474|=4 4最小,所以73243247的“伴随数”.

故答案为:41927324

2)∵P为“半期数”

a+b=5c+d=11,∴b=5ad=11c,∴P=1000a+1005a+10c+11c=900a+9c+511

Q=200+10a+c,∴441Q4P=88991,∴441200+10a+c)﹣4900a+9c+511=88991

化简得:2a+c=7

①当a=1时,c=5,此时这个四位数为1456符合题意;

②当a=2时,c=3,此时这个四位数为2338不符合题意,舍去;

③当a=3时,c=1,不符合题意,舍去;

综上所述:这个四位数只能是1456,则P'可能为456156146145

|5+1241|=12|6+254|=1|1+865|=21最小,所以5614P的“伴随数”,∴F5614=a2+c22bd=25+12×6×4=22

F4561=a2+c22bd=16+362×5×1=42

F6145=a2+c22bd=36+162×1×5=42

FP')的最大值为42

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空,把下面的推理过程补充完整,并在括号内注明理由:

如图,已知ABCD在同一直线上,AEDFAC=BD,∠E=F,求证:BECF.

证明:AEDF(已知)

_________(两直线平行,内错角相等)

AC=BD(已知)

又∵AC=AB+BCBD=BC+CD

________(等式的性质)

∵∠E=F(已知)

ABEDCF(___________)

∴∠ABE=DCF(_________________)

ABF+CBE=180°,∠DCF+BCF=180°

∴∠CBE=BCF(__________________)

BECF(________________________)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线AB分别与x轴、y轴交于点BC,与直线OA交于点A.已知点A的坐标为(﹣35),OC4

1)分别求出直线ABAO的解析式;

2)求ABO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年“五一节”前,某商场用60万元购进某种商品,该商品有甲、乙两种包装共500件,其中每件甲包装中有75个A种产品,每个A产品的成本为12元;每件乙包装中有100个B产品,每个B种产品的成本为14元.商场将A产品标价定为每个18元,B产品标价定为每个20元.

(1)甲、乙两种包装的产品各有多少件?

(2)“五一节”商场促销,将A产品按原定标价打9折销售,B种产品按原定标价打8.5折销售,“五一节”期间该产品全部卖完,该商场销售该商品共获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为边长为2的正方形ABCD的对角线BD上任一点,过点PPEBC于点EPFCD于点F,连接EF.给出以下4个结论:①APEF;②APEF;③EF最短长度为;④若∠BAP30°时,则EF的长度为2.其中结论正确的有(  )

A. ①②③B. ①②④C. ②③④D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC的三个顶点坐标为A(﹣23),B(﹣60),C(﹣10).

1)将ABC绕坐标原点O旋转180°,画出图形,并写出点A的对应点A′的坐标_____

2)将ABC绕坐标原点O逆时针旋转90°,直接写出点A的对应点A″的坐标_____

3)请直接写出:以ABC为顶点的平行四边形的第四个顶点D所有可能的坐标_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;OO′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+4;⑤SAOC+SAOB=6+,其中正确的结论是(  )

A. ①②③⑤ B. ①②③④ C. ①②④⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:

(1)二次函数和反比例函数的关系式.

(2)弹珠在轨道上行驶的最大速度.

(3)求弹珠离开轨道时的速度.

查看答案和解析>>

同步练习册答案