分析 (1)如图1,由AB与x轴平行,根据抛物线的对称性有AE=BE=1,由于∠AOB=90°,得到OE=$\frac{1}{2}$AB=1,求出A(-1,1)、B(1,1),把x=1时,y=1代入y=ax2得:a=1得到抛物线的解析式y=x2,A、B两点的横坐标的乘积为xA•xB=-1
(2)如图2,过A作AM⊥x轴于M,BN⊥x轴于N得到∠AMO=∠BNO=90°,证出△AMO∽△BON,得到OM•ON=AM•BN,设A(xA,yA),B(xB,yB),由于A(xA,yA),B(xB,yB)在y=x2图象上,得到yA=${{x}_{A}}^{2}$,yB=${{x}_{B}}^{2}$,即可得到结论;
(3)设A(m,m2),B(n,n2).作辅助线,证明△AEO∽△OFB,得到mn=-1.再联立直线m:y=kx+b与抛物线y=x2的解析式,由根与系数关系得到:mn=-b,所以b=1;由此得到OD、CD的长度,从而得到PD的长度;作辅助线,构造Rt△PDG,由勾股定理求出点P的坐标.
解答
解:(1)如图1,∵AB与x轴平行,
根据抛物线的对称性有AE=BE=1,
∵∠AOB=90°,
∴OE=$\frac{1}{2}$AB=1,
∴A(-1,1)、B(1,1),
把x=1时,y=1代入y=ax2得:a=1,
∴抛物线的解析式y=x2,
A、B两点的横坐标的乘积为xA•xB=-1
(2)xA•xB=-1为常数,
如图2,过A作AM⊥x轴于M,BN⊥x轴于N,![]()
∴∠AMO=∠BNO=90°,
∴∠MAO+∠AOM=∠AOM+∠BON=90°,
∴∠MAO=∠BON,
∴△AMO∽△BON,
∴$\frac{AM}{ON}=\frac{OM}{BN}$,
∴OM•ON=AM•BN,
设A(xA,yA),B(xB,yB),
∵A(xA,yA),B(xB,yB)在y=x2图象上,
∴,yA=${{x}_{A}}^{2}$,yB=${{x}_{B}}^{2}$,
∴-xA•xB=yA•yB=${{x}_{A}}^{2}$•${{x}_{B}}^{2}$,
∴xA•xB=-1为常数;
(3)设A(m,m2),B(n,n2),
如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.
∴$\frac{AE}{OF}=\frac{OE}{BF}$,即$\frac{{m}^{2}}{n}=\frac{-m}{{n}^{2}}$,整理得:mn(mn+1)=0,
∵mn≠0,∴mn+1=0,即mn=-1.
设直线AB的解析式为y=kx+b,联立$\left\{\begin{array}{l}{y=kx+b}\\{y{=x}^{2}}\end{array}\right.$,得:x2-kx-b=0.
∵m,n是方程的两个根,∴mn=-b.
∴b=1.![]()
∵直线AB与y轴交于点D,则OD=1.
易知C(0,-2),OC=2,∴CD=OC+OD=3.
∵∠BPC=∠OCP,∴PD=CD=3.
设P(a,-2a-2),过点P作PG⊥y轴于点G,则PG=-a,GD=OG-OD=-2a-3.
在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,
即:(-a)2+(-2a-3)2=32,整理得:5a2+12a=0,
解得a=0(舍去)或a=-$\frac{12}{5}$,
当a=-$\frac{12}{5}$时,-2a-2=$\frac{14}{5}$,
∴P(-$\frac{12}{5}$,$\frac{14}{5}$).
点评 本题考查了二次函数与一次函数的图象与性质、等腰直角三角形的性质,勾股定理、相似三角形的判定和性质、一元二次方程等知识点,有一定的难度.第(3)问中,注意根与系数关系的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com