精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,Rt△AOB的斜边OA在x轴的正半轴上,∠OBA=90°,且tan∠AOB= ,OB=2 ,反比例函数y= 的图象经过点B.

(1)求反比例函数的表达式;
(2)若△AMB与△AOB关于直线AB对称,一次函数y=mx+n的图象过点M、A,求一次函数的表达式.

【答案】
(1)

解:过点B作BD⊥OA于点D,

设BD=a,

∵tan∠AOB= =

∴OD=2BD.

∵∠ODB=90°,OB=2

∴a2+(2a)2=(2 2

解得a=±2(舍去﹣2),

∴a=2.

∴OD=4,

∴B(4,2),

∴k=4×2=8,

∴反比例函数表达式为:y=


(2)

解:∵tan∠AOB= ,OB=2

∴AB= OB=

∴OA= = =5,

∴A(5,0).

又△AMB与△AOB关于直线AB对称,B(4,2),

∴OM=2OB,

∴M(8,4).

把点M、A的坐标分别代入y=mx+n,得

解得

故一次函数表达式为:y= x﹣


【解析】(1)过点B作BD⊥OA于点D,设BD=a,通过解直角△OBD得到OD=2BD.然后利用勾股定理列出关于a的方程并解答即可;(2)欲求直线AM的表达式,只需推知点A、M的坐标即可.通过解直角△AOB求得OA=5,则A(5,0).根据对称的性质得到:OM=2OB,结合B(4,2)求得M(8,4).然后由待定系数法求一次函数解析式即可.
【考点精析】本题主要考查了解直角三角形的相关知识点,需要掌握解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:
(1)sin45°+sin30°cos60°;
(2)+( 1﹣2cos60°+(2﹣π)0
(3)+1﹣3tan230°+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)
拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.
应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为提高学生身体素质,决定开展足球、篮球、台球、乒乓球四项课外体育活动,并要求学生必须并且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并绘制出以下两幅不完整的统计图.请根据统计图回答下列问题.(要求写出简要的解答过程)
(1)这次活动一共调查了多少名学生?
(2)补全条形统计图.
(3)若该学校总人数是1300人,请估计选择篮球项目的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:

x

﹣1

0

1

3

y

﹣3

1

3

1

下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算错误的是(
A. =4
B.32×31=3
C.20÷22=
D.(﹣3×1023=﹣2.7×107

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的A,B两点的俯角分别为17.9°,22°,并测得塔底点C到点B的距离为142米(A、B、C在同一直线上,如图2),求运河两岸上的A、B两点的距离(精确到1米).
(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】书店举行购书优惠活动: ①一次性购书不超过100元,不享受打折优惠;
②一次性购书超过100元但不超过200元一律打九折;
③一次性购书超过200元一律打七折.
小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据要求进行计算:
(1)化简:(x﹣2)2+x(x+4)
(2)解不等式组

查看答案和解析>>

同步练习册答案