精英家教网 > 初中数学 > 题目详情

抛物线y=数学公式x2+(k+数学公式)x+(k+1)(k为常数)与x轴交于A(x1,0)、B(x2,0)(x1<0<x2)两点,与y轴交于C点,且满足(OA+OB)2=OC2+16.
(1)求此抛物线的解析式;
(2)设M、N是抛物线在x轴上方的两点,且到x轴的距离均为1,点P是抛物线的顶点,问:过M、N、C三点的圆与直线CP是否只有一个公共点C?试证明你的结论.

解:(1)∵(OA+OB)2=OC2+16,
∴(-x1+x22=OC2+16,
∴4(k+2-4×2×(k+1)=(k+1)2+16,
解得k1=-2,k2=4.
∵x1<0<x2
∴x1•x2=2(k+1)<0,
即k<-1,
∴k=-2.
∴抛物线解析式为y=x2-x-1

(2)过M、N、C三点的圆与直线CP只有一个公共点C.证明如下:
如图,∵抛物线上的点M、N在x轴上方,且到x轴距离均为1,设MN交y轴于E,
则M(-1,1),N(4,1),且C(0,-1),P(,-),
在Rt△MEC中,MC2=5,同理NC2=20,
又∵MN2=25,MN2-MC2=NC2
∴∠MCN=90°.
故MN是过M、N、C三点的圆的直径,圆心D(,1),
作CF⊥DP于F,连接CD,
则CFDE为矩形.
FD=CE=2,CF=ED=
又∵PF=
在Rt△CFP中,CP2=CF2+PF2=(2+(2=
在△CDP中,DP2-CD2=(2-(2==CP2
即CP2+CD2=DP2
∴CP⊥CD,直线CP与⊙D相切于点C,
故直线CP和过M、N、C三点的圆只有一个公共点C.
分析:(1)由(OA+OB)2=OC2+16,可以解得k的值.
(2)由抛物线上的点M、N在x轴上方,且到x轴距离均为1,设MN交y轴于E,求出M、N两点坐标,在Rt△MEC中,MC2=5,同理NC2=20,又∵MN2=25,MN2+MC2=NC2,可证MN是过M、N、C三点的圆的直径,作CF⊥DP于F,连接CD,则CFDE为矩形,在Rt△MEC中和△CDP中,可知即CP2+CD2=DP2,进而证明.
点评:本题二次函数的综合题,要求会求二次函数的解析式和两图象的交点,会判定直线和圆相切,本题步骤有点多,做题需要细心.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线y=x-3于x轴、y轴分别交于B、C;两点,抛物线y=x2+bx+c同时经过B、C两点,点精英家教网A是抛物线与x轴的另一个交点.
(1)求抛物线的函数表达式;
(2)若点P在线段BC上,且S△PAC=
12
S△PAB,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1、x2是抛物线y=x2-2(m-1)x+m2-7与x轴的两个交点的横坐标,且x12+x22=10.
求:(1)x1、x2的值;
(2)抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知一元二次方程-x2+bx+c=0的两个实数根是m,4,其中0<m<4.
(1)求b、c的值(用含m的代数式表示);
(2)设抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C.若点D的坐标为(0,-2),且AD•BD=10,求抛物线的解析式及点C的坐标;
(3)在(2)中所得的抛物线上是否存在一点P,使得PC=PD?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知抛物线y=x2+bx+c的部分图象如图所示,若方程x2+bx+c=0有两个同号的实数根,则c的值可以是
2
.(写出一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

11、在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是(  )

查看答案和解析>>

同步练习册答案