精英家教网 > 初中数学 > 题目详情

【题目】已知函数f(x)=|x﹣1|+|x+a|,
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)若a>﹣1,且当x∈[﹣a,1]时,不等式f(x)≤g(x)有解,求实数a的取值范围.

【答案】
(1)解:当a=﹣2时,

f(x)=|x﹣1|+|x﹣2|=

∴f(x)<g(x)等价于

解得0<x<1或1≤x≤2或2<x<4,即0<x<4.

∴不等式f(x)<g(x)的解集为{x|0<x<4}.


(2)解:∵x∈[﹣a,1],∴f(x)=1﹣x+x+a=a+1,

不等式f(x)=a+1≤g(x)max=( max

∴﹣1<a≤

∴实数a的取值范围是(﹣1, ].


【解析】(1)当a=﹣2时,f(x)<g(x)等价于 ,由此能求出不等式f(x)<g(x)的解集.(2)推导出f(x)=a+1,不等式f(x)≤a+1≤( max , 由此能求出实数a的取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知圆F1:(x+1)2+y2=16,定点F2(1,0),A是圆F1上的一动点,线段F2A的垂直平分线交半径F1A于P点. (Ⅰ)求P点的轨迹C的方程;
(Ⅱ)四边形EFGH的四个顶点都在曲线C上,且对角线EG,FH过原点O,若kEGkFH=﹣ ,求证:四边形EFGH的面积为定值,并求出此定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.
(Ⅰ)求r的取值范围;
(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列叙述中正确的是(
A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2﹣4ac≤0”
B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”
C.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”
D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB= ,AA1=2,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1
(1)证明:CD⊥AB1
(2)若OC=OA,求直线C1D与平面ABC所成角的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰梯形ABCD中,AB∥DC、CD=2AB=4,∠A= ,向量 满足 =2 =2 + ,则下列式子不正确的是(
A.| |=2
B.|2 |=2
C.2 =﹣2
D. =1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),其中0≤α<π.在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C1:ρ=4cosθ.直线l与曲线C1相切.
(1)将曲线C1的极坐标方程化为直角坐标方程,并求α的值.
(2)已知点Q(2,0),直线l与曲线C2:x2+ =1交于A,B两点,求△ABQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的方程3x2+mx﹣8=0有一个根是 ,求另一个根及m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2
以上结论中,你认为正确的有 . (填序号)

查看答案和解析>>

同步练习册答案