精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),其中0≤α<π.在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C1:ρ=4cosθ.直线l与曲线C1相切.
(1)将曲线C1的极坐标方程化为直角坐标方程,并求α的值.
(2)已知点Q(2,0),直线l与曲线C2:x2+ =1交于A,B两点,求△ABQ的面积.

【答案】
(1)解:曲线C1:ρ=4cosθ,即ρ2=4ρcosθ,化为直角坐标方程:x2+y2=4x,配方为C1:(x﹣2)2+y2=4,可得圆心(2,0),半径r=2

直线l的参数方程为 (t为参数),其中0≤α<π,普通方程为y﹣ =k(x﹣1),k=tanα,0≤α<π,

∵直线l与曲线C1相切,∴ =2,∴k= ,∴α=


(2)解:直线l的方程为y= x+ ,代入曲线C2:x2+ =1,整理可得10x2+4x﹣5=0,

∴|AB|= =

Q到直线的距离d= =2,

∴△ABQ的面积S= =


【解析】(1)曲线C1:ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2 , x=ρcosθ代入可得C的直角坐标方程,利用直线l与曲线C1相切求α的值.(2)直线l的方程为y= x+ ,代入曲线C2:x2+ =1,整理可得10x2+4x﹣5=0,求出|AB|,Q到直线的距离,即可求△ABQ的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=2,且满足 (n∈N*). (Ⅰ)证明数列 为等差数列;
(Ⅱ)求S1+S2+…+Sn

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着社会发展,广州市在一天的上下班时段经常会出现堵车严重的现象.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别;T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10)严重拥堵.早高峰时段(T≥3),从广州市交通指挥中心随机选取了50个交通路段进行调查,依据交通指数数据绘制的直方图如图所示:
(1)据此直方图,估算交通指数T∈[3,9)时的中位数和平均数;
(2)据此直方图,求市区早高峰马路之间的3个路段至少有2个严重拥堵的概率;
(3)某人上班路上所用时间,若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟;中度拥堵为45分钟;严重拥堵为60分钟,求此人上班所用时间的数学期望.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x+a|,
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)若a>﹣1,且当x∈[﹣a,1]时,不等式f(x)≤g(x)有解,求实数a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,角A、B、C的对边分别为a,b,c,且bcosC=(2a﹣c)cosB.
(1)求角B的大小;
(2)已知b= ,BD为AC边上的高,求BD的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲队修路500米与乙队修路800米所用天数相同,乙队比甲队每天多修30米,问甲队每天修路多少米?
解:设甲队每天修路x米,用含x的代表式完成表格:

甲队每天修路长度(单位:米)

乙队每天修路长度(单位:米)

甲队修500米所用天数(单位:天)

乙队修800米所用天数(单位:天)

x

关系式:甲队修500米所用天数=乙队修800米所用天数
根据关系式列方程为:
解得:
检验:
答:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是(  )
A.6
B.3
C.﹣3
D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上,则这四个点组成的四边形ABB′A′的面积是( )

A.4
B.6
C.9
D.13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某旅游风景区出售一种纪念品,该纪念品的成本为12元/个,这种纪念品的销售价格为x(元/个)与每天的销售数量y(个)之间的函数关系如图所示.
(1)求y与x之间的函数关系式;
(2)销售价格定为多少时,每天可以获得最大利润?并求出最大利润.
(3)“十一”期间,游客数量大幅增加,若按八折促销该纪念品,预计每天的销售数量可增加200%,为获得最大利润,“十一”假期该纪念品打八折后售价为多少?

查看答案和解析>>

同步练习册答案