精英家教网 > 初中数学 > 题目详情

【题目】如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1A1D1→……,白甲壳虫爬行的路线是ABBB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )

A. 0 B. C. D. 1

【答案】B

【解析】

根据爬行规则找出黑、白两个甲壳虫爬行规律,推导出爬行完第2018条棱黑、白两个甲壳虫所处的顶点位置.

根据爬行规则,黑、白两个甲壳虫爬行轨迹如下图:

从图中发现,发现周期为6条棱

……2,

即黑棋子在D1处,白棋子在B1处,它们之间的距离为线段D1 B1的长,

由勾股定理得:D1 B1=

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,∠ACB=90°,AC=BC,AE BC 边的中线,过点C CF⊥AE,垂足为点 F,过点 B BD⊥BC CF 的延长线于点 D.

(1)试证明:AE=CD;

(2)若 AC=12cm,求线段 BD 的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.

问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线 经过B、C两点,顶点D在正方形内部.
(1)直接写出点D(m,n)所有的特征线;
(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;
(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y= ,10:00之后来的游客较少可忽略不计.

(1)请写出图中曲线对应的函数解析式;
(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求下列各式的值

(1) (2)

(3) (4)

(5)+ (6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是梯形,ADBC,A=90°,BC=BD,CEBD,垂足为E.

(1)求证:ABD≌△ECB;

(2)若DBC=50°,求DCE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面积.

(2)若每种植1平方米草皮需要200元,问总共需投入多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的周长是16,OB、OC分别平分∠ABC∠ACB,OD⊥BCDOD=2,△ABC的面积是________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:
在上述数字宝塔中,从上往下数,2016在第层.

查看答案和解析>>

同步练习册答案