【题目】已知:如图,在△ABC中,已知AB=AC,∠BAC=90°,D是BC上一点,EC⊥BC,CE=BD
求证:(1)△ABD≌△ACE;(2)试判断△ADE的形状,并说明理由.
【答案】(1)见解析;(2)△ADE为等腰直角三角形,见解析
【解析】
(1)先求出∠B=∠ACB=45°,利用EC⊥BC求出∠ACE=45°,即可根据SAS证明结论;
(2)利用(1)中△ABD≌△ACE得到AD=AE,∠BAD=∠CAE,根据∠BAD+∠DAC=90°求出∠DAE=90°,即可得到结论.
(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∵EC⊥BC,
∴∠ECB=90°
∵∠ACB=45°,
∴∠ACE=∠ECB-∠ACB=90°-45°=45°,
在△ABD和△ACE中
,
∴△ABD≌△ACE;
(2)△ADE为等腰直角三角形,理由如下:
由(1)可知:△ABD≌△ACE
∴AD=AE,∠BAD=∠CAE,
∵∠BAC=90°,
∴∠BAD+∠DAC=90°,
又∵∠BAD=∠CAE,
∴∠CAE+∠DAC=90°,
∴∠DAE=90°,
∴ADE为等腰直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是矩形ABCD边AB上一动点(不与点B重合),过点E作EF⊥DE交BC于点F,连接DF.已知AB = 4cm,AD = 2cm,设A,E两点间的距离为xcm,△DEF面积为ycm2.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)确定自变量x的取值范围是 ;
(2)通过取点、画图、测量、分析,得到了x与y的几组值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | … |
y/cm2 | 4.0 | 3.7 | 3.9 | 3.8 | 3.3 | 2.0 | … |
(说明:补全表格时相关数值保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF面积最大时,AE的长度为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC.
(1)如图1,若O为AB的中点,以O为圆心,OB为半径作⊙O交BC于点D,过D作DE⊥AC,垂足为E.
①试说明:BD=CD;
②判断直线DE与⊙O的位置关系,并说明理由.
(2)如图2,若点O沿OB向点B移动,以O为圆心,以OB为半径作⊙O与AC相切于点F,与AB相交于点G,与BC相交于点D,DE⊥AC,垂足为E,已知⊙O的半径长为4,CE=2,求切线AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法,其中正确说法的个数是( )
(1)AC与BD的交点是圆O的圆心;
(2)AF与DE的交点是圆O的圆心;
(3);
(4)DE>DG,
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,l1 与 l2 交于点 P,l2 与 l3 交于点 Q,∠l=104°,∠2=87°,要使得 l1∥l2,下列操作正确的是( )
A. 将 l1 绕点 P 逆时针旋转 14°
B. 将 l1 绕点 P 逆时针旋转 17°
C. 将 l2 绕点 Q 顒时针旋转 11°
D. 将 l2 绕点 Q 顺时针旋转 14°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果两条线段将一个三角形分成 3个等腰三角形,我们把这两条线段叫做这个三角形的“三分线”.例如:如图①,线段、把一个顶角为的等腰分成了 3个等腰三角形,则线段、就是等腰的“三分线”.
(1)图②是一个顶角为 45°的等腰三角形,在图中画出“三分线”,并标出每个等腰三角形顶角的度数.
(2)如图③,在边上取一点,令可以分割出第一个等腰,接着又需要考虑如何将分成2个等腰三角形,即可画出所需要的“三分线”,类比该方法,在图④中画出的“三分线”,并标出每个等腰三角形顶角的度数;
(3)在中,,,.
①画出;(尺规画图,不写作法,保留作图痕迹)
②画出的“三分线”,并做适当的标注.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,O为坐标原点,四边形OABC为矩形,B(5,2),点D是OA的中点,动点P在线段BC上以每秒2个单位长的速度由点C向B 运动.设动点P的运动时间为t秒
(1)当t为何值时,四边形PODB是平行四边形?
(2)在直线CB上是否存在一点Q,使得O、D、Q、P四点为顶点的四边形是菱形?若存在,求t的值,并求出Q点的坐标;若不存在,请说明理由.
(3)在线段PB上有一点M,且PM=2.5,当P运动多少,四边形OAMP的周长最小值为多少,并画图标出点M的位置.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com