【题目】定义:如图1,点C在线段AB上,若满足AC2=BCAB,则称点C为线段AB的黄金分割点.
如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.
(1)求证:点D是线段AC的黄金分割点;
(2)求出线段AD的长.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax+b的顶点在x轴上,P(x1,m),Q(x2,m)(x1<x2)是此抛物线上的两点.
(1)若a=1.
①当m=b时,求x1,x2的值;
②将抛物线沿y轴平移,使得它与x轴的两个交点间的距离为4,试描述出这一变化过程;
(2)若存在实数c,使得x1≤c﹣1,且x2≥c+7成立,则m的取值范围是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,对角线AC,BD相交于点O.
(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.
(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为落实素质教育要求,促进学生全面发展,我市某中学2014年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2016年投资18.59万元.
(1)求该学校为新增电脑投资的年平均增长率;
(2)从2014年到2016年,该中学三年为新增电脑共投资多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,用篱笆靠墙围成矩形花围ABCD,墙可利用的最大长度为15米,一面利用旧墙,其余三面用篱笆围成,篱笆总长为24米.
(1)若围成的花圃面积为40米2时,求BC的长;
(2)如图2若计划在花圃中间用一道隔成两个小矩形,且围成的花圃面积为50米2,请你判断能否成功围成花圃,如果能,求BC的长?如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC各顶点的坐标分别为A(2,2),B(4,1),C(4,4).(正方形网格中每个小正方形的边长是 1个单位长度).
(1)画出将△ABC绕点O 顺时针旋转90度得到的△A1B1C1;
(2)写出A1、B1、C1的坐标;
(3)求出线段AC在旋转过程中所扫过的面积(结果保留).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线AE:与抛物线相交于另一点E,点D为抛物线的顶点.
(1)求直线BC的解析式及点E的坐标;
(2)如图2,直线AE上方的抛物线上有一点P,过点P作PF⊥BC于点F,过点P作平行于轴的直线交直线BC于点G,当△PFG周长最大时,在轴上找一点M,在AE上找一点N,使得值最小,请求出此时N点的坐标及的最小值;
(3)在第(2)问的条件下,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点N,E,R,S为顶点的四边形为矩形,若存在,请直接写出点S的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交轴、轴于点C、D,且S△PBD=4, .
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当时,一次函数的值大于反比例函数的值的的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com