精英家教网 > 初中数学 > 题目详情

【题目】如图1,用篱笆靠墙围成矩形花围ABCD,墙可利用的最大长度为15米,一面利用旧墙,其余三面用篱笆围成,篱笆总长为24米.

(1)若围成的花圃面积为402时,求BC的长;

(2)如图2若计划在花圃中间用一道隔成两个小矩形,且围成的花圃面积为502,请你判断能否成功围成花圃,如果能,求BC的长?如果不能,请说明理由.

【答案】(1) BC的长为4米;(2) 不能围成,理由见解析.

【解析】

(1)由于篱笆总长为24m,设平行于墙的BC边长为x m,由此得到,接着根据题意列出方程,解方程即可求出BC的长;
(2)不能围成花圃;设BC的长为y米,则AB的长为,,此方程的判别式=(-24)2-4×150<0,由此得到方程无实数解,所以不能围成花圃;

(1)BC的长度为x米,则AB的长度为米,

根据题意得:x=40

整理得:x224x+80=0

解得:x1=4x2=20

2015

x2=20舍去.

答:BC的长为4米.

(2)不能围成,理由如下:

BC的长为y米,则AB的长为米,

根据题意得:y =50

整理得:y224y+150=0

∵△=(﹣2424×1×150=240

∴该方程无实数根,

∴不能围成面积为502的花圃.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某超市销售樱桃,已知樱桃的进价为15/千克,如果售价为20/千克,那么每天可售出250千克,如果售价为25/千克,那么每天可售出200千克,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间 存在一次函数关系.

(1)求yx之间的函数关系式;

(2)若该超市每天要获得利润810元,同时又要让消费者得到实惠,则售价x应定于多少元?

(3)若樱桃的售价不得高于28/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点EAD的延长线上,则∠CDE的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形 的顶点 都在坐标轴上,点 的坐标为 边的中点.

(1)求出点 的坐标和 的周长;(直接写出结果)

(2)若点 是矩形 的对称轴 上的一点,使以 为顶点的四边形是平行四边形,求出符合条件的点 的坐标;

(3)若 边上一个动点,它以每秒 个单位长度的速度从 点出发,沿 方向向点 匀速运动,设运动时间为 秒.是否存在某一时刻,使以 为顶点的三角形与 相似或全等? 若存在,求出此时 的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于 x 的方程 2x2+kx﹣1=0.

(1)求证:方程有两个不相等的实数根;

(2)若方程的一个根是﹣1,求另一个根及 k 值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,点C在线段AB上,若满足AC2=BCAB,则称点C为线段AB的黄金分割点.

如图2△ABC中,AB=AC=1∠A=36°BD平分∠ABCAC于点D

1)求证:点D是线段AC的黄金分割点;

2)求出线段AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1 m长的影子如图所示,已知窗框的影子DE的点E到窗下墙脚的距离CE=3.9 m,窗口底边离地面的距离BC=1.2 m,试求窗口的高度(即AB的值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具商店对文具进行组合销售,甲种组合:2支红色圆珠笔,4支黑色圆珠笔;乙种组合:3支红色圆珠笔,8支黑色圆珠笔,1个笔记本;丙种组合:2支红色圆珠笔,6支黑色圆珠笔,1个笔记本.已知红色圆珠笔每支2元,黑色圆珠笔每支1.5元,笔记本每个10元.某个周末销售这三种组合文具共485元,其中红色圆珠笔的销售额为116元,则笔记本的销售额为________元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为

A. B. C. D.

查看答案和解析>>

同步练习册答案