【题目】某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可售出200千克,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间 存在一次函数关系.
(1)求y与x之间的函数关系式;
(2)若该超市每天要获得利润810元,同时又要让消费者得到实惠,则售价x应定于多少元?
(3)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?
【答案】(1)y与x的函数关系式为:y=﹣10x+450;(2)该超市每天要获得利润810元,同时又要让消费者得到实惠,则售价x应定于18元;(3)售价为28元时,每天获利最大为2210元.
【解析】试题分析:(1)直接利用待定系数法求出一次函数解析式进而得出答案;
(2)根据“总利润=单件利润×销售量”列方程求解后,根据要让消费者得到实惠可得答案;
(3)首先表示出每天的获利,进而利用配方法结合二次函数增减性得出答案.
试题解析:解:(1)设y与x的函数关系式为:y=kx+b,把(20,250),(25,200)代入得:
,解得: ,∴y与x的函数关系式为:y=﹣10x+450;
(2)根据题意知,(x﹣15)(﹣10x+450)=810,整理得:x2﹣60x+756=0,
解得:x=42或x=18.∵要让消费者得到实惠,∴x=18.
答:该超市每天要获得利润810元,同时又要让消费者得到实惠,则售价x应定于18元;
(3)设每天获利W元,W=(x﹣15)(﹣10x+450)=﹣10x2+600x﹣6750=﹣10(x﹣30)2+2250.
∵a=﹣10<0,∴开口向下.∵对称轴为x=30,∴在x≤28时,W随x的增大而增大,∴x=28时,W最大值=13×170=2210(元).
答:售价为28元时,每天获利最大为2210元.
科目:初中数学 来源: 题型:
【题目】给出如下定义:如果两个不相等的有理数a,b满足等式a-b=ab.那么称a,b是“关联有理数对”,记作(a,b).如:因为,.所以数对(3,)是“关联有理数对”.
(1)在数对①(1,)、②(-1,0)、③(,)中,是“关联有理数对”的是____________(只填序号);
(2)若(m,n)是“关联有理数对”,则(-m,-n)___________“关联有理数对”(填“是”或“不是”);
(3)如果两个有理数是一对“关联有理数对”,其中一个有理数是5,求另一个有理数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.
(1)求证:FH=ED;
(2)当AE为何值时,△AEF的面积最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具店,甲种笔记本标价每本8元,乙种笔记本标价每本5元.今天,甲、乙两种笔记本合计卖了100本,共卖了695元!
(1)两种笔记本各销售了多少?
(2)所得销售款可能是660元吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )
A. 15B. 17C. 19D. 24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小丽准备测一根旗杆AB的高度,已知小丽的眼睛离地面的距离EC=1.5米,第一次测量点C和第二次测量点D之间的距离CD=10米,∠AEG=30°,∠AFG=60°,请你帮小丽计算出这根旗杆的高度.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】贵成高铁开通后极大地方便了人们的出行,甲、乙两个城市相距450千米,加开高铁列车后,高铁列车行驶时间比原特快列车行驶时间缩短了3小时,已知高铁列车平均行驶速度是原特快列车平均行驶速度的3倍,求高铁列车的平均行驶速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某旅行社推出一条成本价位500元/人的省内旅游线路,游客人数y(人/月)与旅游报价x(元/人)之间的关系为y=﹣x+1300,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.
(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;
(2)求经营这条旅游线路每月所需要的最低成本;
(3)档这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?
【答案】(1)取值范围为1100元/人~1200元/人之间;(2)50000;(3)x=900时,w最大=160000
【解析】试题分析:(1)根据题意列不等式求解可;
(2)根据报价减去成本可得到函数的解析式,根据一次函数的图像求解即可;
(3)根据利润等于人次乘以价格即可得到函数的解析式,然后根据二次函数的最值求解即可.
试题解析:(1)∵由题意得时,即,
∴解得
即要将该旅游线路每月游客人数控制在200人以内,该旅游线路报价的取值范围为1100元/人~1200元/人之间;
(2),,∴
∵,∴当时,z最低,即;
(3)利润
当时,.
【题型】解答题
【结束】
23
【题目】已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,连接DF.
(1)求证:CD=CF;
(2)连接DF,交AC于点G,求证:△DGC∽△ADC;
(3)若点H为线段DG上一点,连接AH,若∠ADC=2∠HAG,AD=3,DC=2,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com