【题目】如图,直线y=-x+2 与x轴、y轴分别相交于A、B两点,圆心P的坐标为(-2,0),⊙P与y轴相切于点O.若将⊙P沿x轴向右移动,当⊙P与该直线相交时,满足横坐标为整数的点P的个数是( )
A. 3 B. 4 C. 5 D. 7
【答案】D
【解析】
根据直线与坐标轴的交点,得出A,B的坐标,再利用三角形相似得出圆与直线相切时的坐标,进而得出相交时的坐标.
如图
∵直线y=-x+2 与x轴、y轴分别相交于A、B两点,圆心P的坐标为(-2,0),
∴A点的坐标为0=-x+2
x=6, A(6,0),
B点的坐标为:(0,2 ),
∴AB=4
将圆P沿x轴向左移动,当圆P与该直线相切于C1 时,P1C1 =2,
根据△AP1C1∽△ABO,
∴AP 1 =4,
∴P 1 的坐标为:(2,0),
将圆P沿x轴向左移动,当圆P与该直线相切于C2 时,P2C2 =2,
根据△AP2C2∽△ABO,
∴AP2 =4,
P2 的坐标为:(10,0),
从2到10,当⊙P与该直线相交时,整数点有,3,4,5,6,7,8,9故横坐标为整数的点P的个数是7个
故选D
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中有一格点三角形,该三角形的三个顶点为:A(1,1),B(-3,1),C(-3,-1).
(1)若△ABC的外接圆的圆心为P,则点P的坐标为 ,⊙P的半径为 ;
(2)如图所示,在11×8的网格图内,以坐标原点O点为位似中心,将△ABC按相似比2:1放大,A、B、C的对应点分别为A'、B'、C'.
①画出△A'B'C';
②将△A'B'C'沿x轴方向平移,需平移 个单位长度,能使得B'C'所在的直线与⊙P相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AC平分∠BAD,∠ADC=∠ACB=90°,E为AB的中点,AC与DE交于点F.
(1)求证:CE∥AD;
(2)求证:AC2=ABAD;
(3)若AC=,AB=8,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知CB是⊙O的弦,CD是⊙O的直径,点A为CD延长线上一点,BC=AB,∠CAB=30°.
(1)求证:AB是⊙O的切线;(2)若⊙O的半径为2,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=-x2+2x+3.
(1)求函数图像的顶点坐标,并画出这个函数的图像;
(2)根据图像,直接写出:
①当函数值y为正数时,自变量x的取值范围;
②当-2<x<2时,函数值y的取值范围;
③若经过点(0,k)且与x轴平行的直线l与y=-x2+2x+3的图像有公共点,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程.
已知:如图,⊙O及⊙O上一点P.
求作:过点P的⊙O的切线.
作法:如图,
①作射线OP;
②在直线OP外任取一点A,以点A为圆心,AP为半径作⊙A,与射线OP交于另一点B;
③连接并延长BA与⊙A交于点C;
④作直线PC;
则直线PC即为所求.
根据小元设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明:
证明:∵ BC是⊙A的直径,
∴∠BPC=90°(____________)(填推理的依据).
∴OP⊥PC.
又∵OP是⊙O的半径,
∴PC是⊙O的切线(____________)(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.
(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.
(2)若E为AC的中点,P为A'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com