【题目】请你求出 + 的最小值为 .
【答案】5
【解析】解:∵求 + 的最小值,
也就是求 + 的最小值,
如图,建立平面直角坐标系,点P(0,x)是y轴上一点,
∴ 可以看成点P与点A(1,0)的距离, 可以看成点P与点B(2,4)的距离,
∴原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,
∵求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,
∴PA′+PB的最小值为线段A′B的长度,
作BC⊥x轴于点C,
则BC=4、A′C=3,
∴A′B=5,即PA+PB的最小值为5,
所以答案是:5.
【考点精析】本题主要考查了轴对称-最短路线问题的相关知识点,需要掌握已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】【探索新知】
已知平面上有n(n为大于或等于2的正整数)个点A1 , A2 , A3 , …An , 从第1个点A1开始沿直线滑动到另一个点,且同时满足以下三个条件:①每次滑动的距离都尽可能最大;②n次滑动将每个点全部到达一次;③滑动n次后必须回到第1个点A1 , 我们称此滑动为“完美运动”,且称所有点为“完美运动”的滑动点,记完成n个点的“完美运动”的路程之和为Sn .
(1)如图1,滑动点是边长为a的等边三角形三个顶点,此时S3=;
(2)如图2,滑动点是边长为a,对角线(线段A1A2、A2A4)长为b的正方形四个顶点,此时S4= .
【深入研究】
现有n个点恰好在同一直线上,相邻两点距离都为1,
(3)如图3,当n=3时,直线上的点分别为A1、A2、A3 .
为了完成“完美运动”,滑动的步骤给出如图4所示的两种方法:
方法1:A1→A3→A2→A1 , 方法2:A1→A2→A3→A1 .
①其中正确的方法为 .
A.方法1 B.方法2 C.方法1和方法2
②完成此“完美运动”的S3= .
(4)当n分别取4,5时,对应的S4= , S5=
(5)若直线上有n个点,请用含n的代数式表示Sn .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为直线AB上一点,过点O作射线OC , 使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.
(1)将图1中的三角尺绕着点O逆时针旋转90°,如图1所示,此时∠BOM=;在图1中,OM是否平分∠CON?请说明理由;
(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;
(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小强用8块棱长为3 cm的小正方体,搭建了一个如图所示的积木,下列说法中不正确的是( )
A. 从左面看这个积木时,看到的图形面积是27cm2
B. 从正面看这个积木时,看到的图形面积是54cm2
C. 从上面看这个积木时,看到的图形面积是45cm2
D. 分别从正面、左面、上面看这个积木时,看到的图形面积都是72cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,当△ABC满足什么条件时,四边形ADEF是菱形?( )
A.AB=AC
B.∠BAC=90°
C.∠BAC=120°
D.∠BAC=150°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,先填空后证明.
已知:∠1+∠2=180°,求证:a∥b.
证明:∵∠1=∠3 ,
∠1+∠2=180°
∴∠3+∠2=180
∴a∥b
请你再写出另一种证明方法.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com