【题目】如图,在ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.
(1)求证:△ABE≌△CDF;
(2)若AB=DB,猜想:四边形DFBE是什么特殊的四边形?并说明理由.
【答案】
(1)证明:∵四边形ABCD是平行四边形
AB=CD,∠A=∠C.
AB∥CD,∴∠ABD=∠CDB.
∵BE平分∠ABD,DF平分∠CDB,
∴∠ABE=∠ABD,∠CDF=∠CDB.
∴∠ABE=∠CDF.
在△ABE和△CDF中,
∴△ABE≌△CDF(SAS)
(2)解:四边形DFBE是矩形.理由如下:
∵AB=DB,BE平分∠ABD,
∴BE⊥AD,即∠DEB=90°.
∵AB=DB,AB=CD,
∴DB=CD.
∵DF平分∠CDB,
∴DF⊥BC,即∠BFD=90°.
在□ABCD中,∵AD∥BC,
∴∠EDF+∠DEB=180°.
∴∠EDF=90°.
∴∠DEB=∠BFD=∠EDF=90°.
∴四边形DFBE是矩形
【解析】(1)首先利用平行四边形的想得到AB=CD,∠A=∠C,再利用角平分线的性质得到∠ABE=∠CDF,利用ASA证明△ABE≌△CDF;(2)证明∠DEB=∠BFD=∠EDF=90°.即可解决问题..
科目:初中数学 来源: 题型:
【题目】【探索新知】:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.
(1)一个角的平分线 这个角的“巧分线”;(填“是”或“不是”)
(2)如图2,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ= ;(用含α的代数式表示出所有可能的结果)
【深入研究】:如图2,若∠MPN=60°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成180°时停止旋转,旋转的时间为t秒.
(3)当t为何值时,射线PM是∠QPN的“巧分线”;
(4)若射线PM同时绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN的“巧分线”时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校计划购买篮球、排球共20个,购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同。
(1)篮球和排球的单价各是多少元?
(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是( )
A. a1+a2+a3+a7+a8+a9=2(a4+a5+a6)
B. a1+a4+a7+a3+a6+a9=2(a2+a5+a8)
C. a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5
D. (a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿轴以每秒1个单位长的速度向上移动,且过点P的直线也随之移动,设移动时间为秒.
(1)当时,求直线的解析式;
(2)若点M,N位于直线的异侧,确定的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,连接AE,CF,AC.
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,①求菱形AECF的边长;②求折痕EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A、B、C在数轴上对应的实数分别为a、b、c,满足(b+5)2+|a﹣8|=0,点P位于该数轴上.
(1)求出a,b的值,并求A、B两点间的距离;
(2)设点C与点A的距离为25个单位长度,且|ac|=﹣ac.若PB=2PC,求点P在数轴上对应的实数;
(3)若点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…(以此类推).则点p 能移动到与点A或点B重合的位置吗?若能,请探究需要移动多少次重合?若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是【 】
A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com