精英家教网 > 初中数学 > 题目详情
精英家教网如图,PA是⊙O的切线,切点为A,OP=6,∠APO=30°,则⊙O的半径长为
 
分析:连接OA,即可证得△OPA是直角三角形,利用三角函数即可求解.
解答:精英家教网解:连接OA,
∵PA是⊙O的切线.
∴∠OAP=90°,
∴在直角△APO中,OA=OP•sin∠APO=6×
1
2
=3.
故答案是:3.
点评:本题主要考查了切线的性质,正确作出辅助线,构造直角三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.
(1)求证:PC是⊙O的切线;        
(2)若AC=PD,连结BC.求证:AB=2BC.

查看答案和解析>>

科目:初中数学 来源:2012届山东省临沂市莒南县九年级上学期期中考试数学试卷(带解析) 题型:解答题

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.(1)求证:PC是⊙O的切线;(2)若AC=PD,连结BC.求证:AB="2BC"

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东省临沂市莒南县九年级上学期期中考试数学试卷(解析版) 题型:解答题

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.(1)求证:PC是⊙O的切线;(2)若AC=PD,连结BC.求证:AB=2BC

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.
(1)求证:PC是⊙O的切线;    
(2)若AC=PD,连结BC.求证:AB=2BC.

查看答案和解析>>

科目:初中数学 来源:2013年4月中考数学模拟试卷(58)(解析版) 题型:解答题

如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.
(1)求证:PC是⊙O的切线;        
(2)若AC=PD,连结BC.求证:AB=2BC.

查看答案和解析>>

同步练习册答案