精英家教网 > 初中数学 > 题目详情
20.如图,PA,PB切⊙O于点A,B,PA⊥PB于点P,若PA=4,求图中阴影部分的面积.

分析 连接OA、OB,PA,由于PA、PB分别切⊙O于点A、B,于是得到∠PAO=∠PBO=90°,PA=PB,推出四边形APBO是正方形,根据正方形的性质得到OA=OB=PA=4,∠AOB=90°,根据扇形和三角形的面积公式即可得到结论.

解答 解:连接OA、OB,PA,
∵PA、PB分别切⊙O于点A、B,
∴∠PAO=∠PBO=90°,PA=PB,
∵PA⊥PB于点P,
∴四边形APBO是正方形,
∴OA=OB=PA=4,∠AOB=90°,
∴S阴影=S扇形AOB-S△AOB=$\frac{90π•{4}^{2}}{360}$-$\frac{1}{2}×4×4$=4π-8.

点评 本题考查了切线的性质及扇形的面积计算方法,正方形的判定和性质,证得四边形APBO是正方形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图1,在△ACB中,∠ACB=90°,AC=8,BC=6,正方形CDEF从点C出发沿射线CA匀速运动,当点C与点A重合时停止,正方形CDEF运动的速度为v,与△ABC重叠部分的面积为S,S关于运动时间t的部分图象如图2所示.
(1)填空:CD=3,v=1.
(2)求S关于t的函数解析式,并写出t的取值范围;
(3)当S的值为6时,求出相应的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:
(1)$\frac{1}{2}$$\sqrt{17}$-2$\sqrt{17}$;
(2)$\sqrt{\frac{1}{2}}$+$\sqrt{\frac{1}{8}}$;
(3)3$\sqrt{\frac{1}{3}}$+$\sqrt{12}$;
(4)$\sqrt{48}$+2$\sqrt{3}$-$\sqrt{75}$;
(5)($\sqrt{24}$-$\sqrt{6}$)÷2$\sqrt{3}$;
(6)$\frac{\sqrt{12}+\sqrt{27}}{\sqrt{3}}$;
(7)$\sqrt{3}$×$\sqrt{6}$$-\sqrt{20}$÷$\sqrt{5}$;
(8)$\sqrt{24}$-$\sqrt{18}$×$\sqrt{\frac{1}{3}}$$-\sqrt{\frac{1}{9}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R的扇形草坪(图中阴影部分).
(1)分别求图①②③中草坪的面积;
(2)如果多边形的边数为n,其余条件都不变,那么,你认为草坪的面积为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:点F在线段AB上,BF为⊙0的直径,点D在⊙O上,BC⊥AD于点C,BD平分∠ABC.
(1)求证:AC是⊙0的切线;
(2)若AD=4,AF=2,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,PA,PB分别切⊙O于点A,B,作射线PO,分别交⊙O于点E,C,交AB于点D,∠C=30°,PO=12.
(1)求点P到⊙O的切线PA的长;
(2)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:如图,AB为⊙O的直径,BC切⊙O于点B,AC交⊙O于点P,点E在BC上,并且PE切⊙O于点P.求证:CE=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.设a,b为实数,已知A点是抛物线y=a(x-1)2+b与y轴的交点,B点是抛物线的顶点,过A,B的直线为y=2x+3,则a=-2,b=5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,小明打网球时能击中球的最高高度CD是2.4m,如果发球时要使球恰好能打过网AB,且落在离网5m的位置上,那么小明在离网多远的位置发球?

查看答案和解析>>

同步练习册答案