精英家教网 > 初中数学 > 题目详情
(2012•上海)如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(-1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=
12
,EF⊥OD,垂足为F.
(1)求这个二次函数的解析式;
(2)求线段EF、OF的长(用含t的代数式表示);
(3)当∠ECA=∠OAC时,求t的值.
分析:(1)已知点A、B坐标,用待定系数法求抛物线解析式即可;
(2)关键是证明△EDF∽△DAO,然后利用相似三角形对应边的比例关系以及三角形函数的定义求解;
(3)如解答图,通过作辅助线构造一对全等三角形:△GCA≌△OAC,得到CG、AG的长度;然后利用勾股定理求得AE、EG的长度(用含t的代数式表示);最后在Rt△ECF中,利用勾股定理,得到关于t的无理方程,解方程求出t的值.
解答:解:(1)二次函数y=ax2+6x+c的图象经过点A(4,0)、B(-1,0),
16a+6×4+c=0
a-6+c=0
,解得
a=-2
c=8

∴这个二次函数的解析式为:y=-2x2+6x+8;

(2)∵∠EFD=∠EDA=90°
∴∠DEF+∠EDF=90°,∠EDF+∠ODA=90°,
∴∠DEF=∠ODA
∴△EDF∽△DAO
EF
DO
=
ED
DA

ED
DA
=tan∠DAE=
1
2

EF
DO
=
1
2

EF
t
=
1
2

∴EF=
1
2
t.
同理
DF
OA
=
ED
DA

∴DF=2,
∴OF=t-2.

(3)∵抛物线的解析式为:y=-2x2+6x+8,
∴C(0,8),OC=8.
如图,连接EC、AC,过A作EC的垂线交CE于G点.
∵∠ECA=∠OAC,
在△GCA与△OAC中,
∠GCA=∠CAO
AC=AC
∠COA=∠CGA

∴△GCA≌△OAC,
∴CG=4,AG=OC=8.
如图,过E点作EM⊥x轴于点M,则在Rt△AEM中,
∴EM=OF=t-2,AM=OA+OM=OA+EF=4+
1
2
t,
由勾股定理得:
∵AE2=AM2+EM2=(4+
1
2
t)
2
+(t-2)2

在Rt△AEG中,由勾股定理得:
∴EG=
AE2-AG2
=
(4+
1
2
t)
2
+(t-2)2-82
=
5
4
t2-44

∵在Rt△ECF中,EF=
1
2
t,CF=OC-OF=OC-EM=8-(t-2)=10-t,CE=CG+EG=
5
4
t2-44
+4
由勾股定理得:EF2+CF2=CE2
(
1
2
t)2+(10-t)2=(
5
4
t2-44
+4)2

解得t1=10,t2=6,
∵当t=10时,CF=10-10=0,
∴不合题意舍去,
∴t=6.
点评:本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理和待定系数法求二次函数解析式等多个知识点,难度较大.第(3)问中,涉及到无理方程的求解,并且计算较为复杂,注意不要出错.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•上海)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,点D在AC上,将△ADB沿直线BD翻折后,将点A落在点E处,如果AD⊥ED,那么线段DE的长为
3
-1
3
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•上海)如图,在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.己知AC=15,cosA=
35

(1)求线段CD的长;
(2)求sin∠DBE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•上海)如图,已知梯形ABCD,AD∥BC,BC=2AD,如果
AD
=
a
AB
=
b
,那么
AC
=
2
a
+
b
2
a
+
b
(用
a
b
表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•上海)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.
(1)当BC=1时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.

查看答案和解析>>

同步练习册答案