精英家教网 > 初中数学 > 题目详情

温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.
(1)当n=200时,
①根据信息填表:

 
A地
B地
C地
合计
产品件数(件)
x
 
2x
200
运费(元)
30x
  
 
 
 
②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?
(2)若总运费为5800元,求n的最小值.

(1)填表见解析;有三种方案,分别是:方案一:A地40件,B地80件,C地80件;方案二:A地41件,B地77件,C地82件;方案三:A地42件,B地74件,C地84件;(2)221.

解析试题分析:(1)①根据n=200求出运往B第的件数,再分别乘以单价即可求出运往B地、C地的运费;
②根据运往B地的件数不多于运往C地的件数,总运费不超过4000元列出不等式组,然后求解得到x的取值范围,再根据x是正整数确定出运输方案;
(2)根据总运费列出算式并用x表示出n,再根据n不小于运往A、C两地的件数求出x的取值范围,然后根据一次函数的增减性求出n的最小值即可.
(1)①根据信息填表:
 ;
②由题意,得

解不等式①得,x≥40,
解不等式②得,x≤
所以,40≤x≤
∵x为整数,
∴x=40或41或42,
∴有三种方案,分别是:方案一:A地40件,B地80件,C地80件;
方案二:A地41件,B地77件,C地82件;
方案三:A地42件,B地74件,C地84件;
(2)由题意,得30x+8(n-3x)+50x=5800,
整理,得n=725-7x,
∵n-3x≥0,
∴725-7x-3x≥0,
解得x≤72.5,
又∵x≥0,
∴0≤x≤72.5且x为整数,
∵n随x的增大而减少,
∴当x=72时,n有最小值为725-7×72=221.
考点: 1.一次函数的应用;2.一元一次不等式组的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.
(1)求k的值及点E的坐标;
(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系xOy中,一次函数y=-x+3的图象与x轴交于点A,与y轴交于点B,动点P从点B出发沿BA向终点A运动,同时动点Q从点O出发沿OB向点B运动,到达点B后立刻以原来的速度沿BO返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点A时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.
(1)求点P的坐标(用含t的代数式表示);
(2)当点Q从点O向点B运动时(未到达点B),是否存在实数t,使得△BPQ的面积大于17若存在,请求出t的取值范围;若不存在,请说明理由;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.是否存在t的值,使得直线l经过点O?若存在,请求出所有t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A、B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,B款式服装24件,并将这批服装分配给两个店铺各30件.
(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?
(2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获利的总利润最大?最大的总利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,5)和点B,与y轴相交于点C(0,7).
(1)求这两个函数的解析式;
(2)当x取何值时, <.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一次函数y=x+b的图象与x轴,y轴交于点A、B.
(1)若将此函数图象沿x轴向右平移2个单位后经过原点,则b=     
(2)若函数y1=x+b图象与一次函数y2=kx+4的图象关于y轴对称,求k、b的值;
(3)当b>0时,函数y1=x+b图象绕点B逆时针旋转n°(0°<n°<180°)后,对应的函数关系式为y=-x+b,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,与y轴交于点B,已知,点C(-2,m)在直线AB上,反比例函数的图象经过点C.
(1)求一次函数及反比例函数的解析式;
(2)结合图象直接写出:当时,不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线,相交于点轴的交点坐标为轴的交点坐标为,结合图象解答下列问题:(每小题4分,共8分)
(1)求直线表示的一次函数的表达式;
(2)当为何值时,,表示的两个一次函数值都大于.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.
(1)请问有几种开发建设方案?
(2)哪种建设方案投入资金最少?最少资金是多少万元?
(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.

查看答案和解析>>

同步练习册答案