精英家教网 > 初中数学 > 题目详情

如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.
(1)求k的值及点E的坐标;
(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.

(1)k=3,点纵坐标为(2,);(2).

解析试题分析:(1)根据题意易知D(1,3),把D(1,3)代入y=,从而求出k=3;然后把E点的横坐标代入y=,求出y的值,从而确定E点坐标;
(2)由(1)易求出BD、BE、BC的值,因为△FBC∽△DEB,根据相似三角形的性质,可求出DF的值,从而确定F点的坐标,根据待定系数法可求出FB的直线解析式.
试题解析:(1)在矩形OABC中, ∵B点坐标为(2,3),
∴BC边中点D的坐标为(1,3)
又∵双曲线y=的图像经过点D(1,3)

∴k=3
∵E点在AB上,
∴E点的横坐标为2.
又∵y=,经过点E,
∴E点纵坐标为
∴E点纵坐标为(2,
(2)由(1)得,BD=1,BE=,BC=2,
∵△FBC∽△DEB,
,即.

,即点F的坐标为
设直线FB的解析式为,而直线FB经过B(2,3),F(0,
,解得
∴直线FB的解析式为
考点: 一次函数与反比例函数的综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

画出函数y=﹣x+1的图象,结合图象,回答下列问题.
在函数y=﹣x+1的图象中:
(1)画出函数图象并写出与x轴的交点坐标是 _________ 
(2)随着x的增大,y将 _________ (填“增大”或“减小”);
(3)当y取何值时,x<0? _________ 
(4)把它的图象向下平移2个单位长度则得到的新的一次函数解析式是 _________ 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

张先生准备在沙坪坝购买一套小户型商品房,他去某楼盘了解情况得知, 该户型商品房的单价是8000元/,面积如图所示(单位:米,卫生间的宽未定,设宽为米),售房部为张先生提供了以下两种优惠方案:
方案一:整套房的单价是8000元/,其中厨房可免费赠送的面积;
方案二:整套房按原销售总金额的9折出售.
(1)用表示方案一中购买一套该户型商品房的总金额,用表示方案二中购买一套该户型商品房的总金额,分别求出的关系式;
(2)求取何值时,两种优惠方案的总金额一样多?
(3)张先生因现金不够,于2012年1月在建行借了9万元住房贷款,贷款期限为6年,从开始贷款的下一个月起逐月偿还,贷款月利率是0.5%,每月还款数额=平均每月应还的贷款本金数额+月利息,月利息=上月所剩贷款本金数额×月利率.
①张先生借款后第一个月应还款数额是多少元?
②假设贷款月利率不变,若张先生在借款后第是正整数)个月的还款数额为P,请写出P与之间的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一次函数y=kx+b,当x=2时,y=﹣3,当x=1时,y=﹣1.
(1)求一次函数的解析式;
(2)若该一次函数的图形交x轴y轴分别于A、B两点,求△ABO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:

桌椅型号
一套桌椅所坐学生人数(单位:人)
生产一套桌椅所需木材(单位:m3
一套桌椅的生产成本(单位:元)
一套桌椅的运费(单位:元)
A
2
0.5
100
2
B
3
0.7
120
4
 
设生产A型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y元.
(1)求y与x之间的关系式,并指出x的取值范围;
(2)当总费用y最小时,求相应的x值及此时y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与x轴相交于点A(-2,0),与y轴交于点C,与反比例函数在第一象限内的图象交于点B(m,n),连结OB.若SAOB=6,SBOC=2.
(1)求一次函数的表达式;
(2)求反比例函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,点O坐标原点,直线l分别交x轴、y轴于A,B两点,OA<OB,且OA、OB的长分别是一元二次方程的两根.
(1)求直线AB的函数表达式;
(2)点P是y轴上的点,点Q第一象限内的点.若以A、B、P、Q为顶点的四边形是菱形,请直接写出Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.
(1)当n=200时,
①根据信息填表:

 
A地
B地
C地
合计
产品件数(件)
x
 
2x
200
运费(元)
30x
  
 
 
 
②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?
(2)若总运费为5800元,求n的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起     分钟该容器内的水恰好放完.

查看答案和解析>>

同步练习册答案