7£®ÔĶÁ²ÄÁÏ£º½â·½³Ì×é$\left\{\begin{array}{l}{x-y-1=0¢Ù}\\{4£¨x-y£©-y=5¢Ú}\end{array}\right.$ʱ£¬¿ÉÓÉ¢ÙµÃx-y=1¢Û£¬È»ºóÔÙ½«¢Û´úÈë¢ÚµÃ4¡Á1-y=5£¬ÇóµÃy=-1£¬´Ó¶ø½øÒ»²½ÇóµÃ$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$£®ÕâÖÖ·½·¨±»³ÆÎª¡°ÕûÌå´úÈë·¨¡±£®
ÇëÓÃÉÏÊö·½·¨½â·½³Ì×飺$\left\{\begin{array}{l}{6x-2y=3}\\{£¨3x-y£©£¨3x+4y£©=6}\end{array}\right.$£®

·ÖÎö °ÑµÚÒ»¸ö·½³Ì±äÐαíʾ³ö3x-y£¬´úÈëµÚ¶þ¸ö·½³ÌÇó³ö3x+4yµÄÖµ£¬ÁªÁ¢Çó³öxÓëyµÄÖµ£¬¼´ÎªÔ­·½³Ì×éµÄ½â£®

½â´ð ½â£º$\left\{\begin{array}{l}{6x-2y=3¢Ù}\\{£¨3x-y£©£¨3x+4y£©=6¢Ú}\end{array}\right.$£¬
Óɢٵãº3x-y=$\frac{3}{2}$¢Û£¬
°Ñ¢Û´úÈë¢ÚµÃ£º$\frac{3}{2}$£¨3x+4y£©=6£¬
½âµÃ£º3x+4y=4£¬
Ôٽⷽ³Ì×é$\left\{\begin{array}{l}{6x-2y=3}\\{3x+4y=4}\end{array}\right.$µÃ£º$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=\frac{1}{2}}\end{array}\right.$£¬
ÔòÔ­·½³Ì×éµÄ½âΪ$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=\frac{1}{2}}\end{array}\right.$£®

µãÆÀ ´ËÌ⿼²éÁ˽â¶þÔªÒ»´Î·½³Ì×飬ÀûÓÃÁËÏûÔªµÄ˼Ï룬ÏûÔªµÄ·½·¨ÓУº´úÈëÏûÔª·¨Óë¼Ó¼õÏûÔª·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Ô²×¶µÄµ×ÃæÖ±¾¶ÊÇ6£¬Ä¸Ïß³¤Îª5£¬ÔòÔ²×¶²àÃæÕ¹¿ªÍ¼µÄÔ²ÐĽÇÊÇ216¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èç¹ûÌÝÐÎABCDÖУ¬AD¡ÎBC£¬E¡¢F·Ö±ðÊÇAB¡¢CDµÄÖе㣬AD=1£¬BC=3£¬ÄÇôËıßÐÎAEFDÓëËıßÐÎEBCFµÄÃæ»ý±ÈÊÇ3£º5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ä³Ï³Ì£¬ÐëÔÚ40ÌìÄÚÍê³É£®ÏÖÓмס¢ÒÒÁ½¸ö¹¤³Ì¶ÓÓÐÒâ³Ð°üÕâÏ³Ì£®¾­µ÷²éÖªµÀ£ºÒÒ¹¤³Ì¶Óµ¥¶ÀÍê³É´ËÏ³ÌµÄʱ¼äÊǼ׹¤³Ì¶Óµ¥¶ÀÍê³É´ËÏ³Ìʱ¼äµÄ2±¶£¬Èô¼×¡¢ÒÒÁ½¹¤³Ì¶ÓºÏ×÷Ö»Ðè10ÌìÍê³É£®
£¨1£©¼×¡¢ÒÒÁ½¸ö¹¤³Ì¶Óµ¥¶ÀÍê³É´ËÏ³Ì¸÷Ðè¶àÉÙÌ죿
£¨2£©Èô¼×¹¤³Ì¶ÓÿÌìµÄ¹¤³Ì·ÑÓÃÊÇ4.5ÍòÔª£¬ÒÒ¹¤³Ì¶ÓÿÌìµÄ¹¤³Ì·ÑÓÃÊÇ2.5ÍòÔª£®ÇëÄãÉè¼ÆÒ»ÖÖ·½°¸£¬¼ÈÄܰ´Ê±Í깤£¬ÓÖÄÜʹ¹¤³Ì·ÑÓÃ×îÉÙ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÈçͼΪһ¸ö°ë¾¶Îª4mµÄÔ²Ðι㳡£¬ÆäÖзÅÓÐÁù¸ö¿íΪ1mµÄ³¤·½ÐÎÁÙʱ̯룬ÕâЩ̯λ¾ùÓÐÁ½¸ö¶¥µãÔڹ㳡±ßÉÏ£¬ÁíÁ½¸ö¶¥µã½ô¿¿ÏàÁÚ̯λµÄ¶¥µã£¬Ôòÿ¸ö³¤·½ÐÎ̯λµÄ³¤Îª$\frac{-\sqrt{3}+3\sqrt{7}}{2}$m£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔڲݸåÖ½ÉϼÆË㣺¢Ù$\sqrt{{1}^{3}}$£»¢Ú$\sqrt{{1}^{3}+{2}^{3}}$£»¢Û$\sqrt{{1}^{3}+{2}^{3}+{3}^{3}}$£»¢Ü$\sqrt{{1}^{3}+{2}^{3}+{3}^{3}+{4}^{3}}$£¬¹Û²ìÄã¼ÆËãµÄ½á¹û£¬ÓÃÄã·¢ÏֵĹæÂÉÖ±½Óд³öÏÂÃæÊ½×ÓµÄÖµ£º
$\sqrt{{1}^{3}+{2}^{3}+{3}^{3}+¡­+2{0}^{3}}$=210£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èô|x-2|+$\sqrt{y+3}$=0£¬ÔòxyµÄֵΪ£¨¡¡¡¡£©
A£®-8B£®-6C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÎÊÌ⣺ÔĶÁÀýÌâµÄ½â´ð¹ý³Ì£¬²¢½â´ð£¨1£©£¨2£©£º
Àý£ºÓüò±ã·½·¨¼ÆËã195¡Á205
½â£º195¡Á205
=£¨200-5£©£¨200+5£©¢Ù
=2002-52¢Ú
=39975
£¨1£©ÀýÌâÇó½â¹ý³ÌÖУ¬µÚ¢Ú²½±äÐÎÒÀ¾ÝÊÇÆ½·½²î¹«Ê½£¨Ìî³Ë·¨¹«Ê½µÄÃû³Æ£©£®
£¨2£©Óô˷½·¨¼ÆË㣺99¡Á101¡Á10001£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈôƽÐÐËıßÐÎÖÐÁ½¸öÄڽǵĶÈÊý±ÈΪ1£º2£¬ÔòÆäÖнϴóµÄÄÚ½ÇÊÇ£¨¡¡¡¡£©
A£®45¡ãB£®60¡ãC£®90¡ãD£®120¡ã

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸