精英家教网 > 初中数学 > 题目详情

已知△ABC中,AB=AC,∠BAC=120°,点D是边AC上一点,连BD,若沿直线BD翻折,点A恰好落在边BC上,则AD:DC=________.


分析:根据折叠得到△ABD≌△A′BD,则∠BA′D=∠A=120°,A′D=AD,进一步得到∠CA′D=60°;根据等腰三角形的两个底角相等和三角形的内角和定理,得∠C=30°,则∠A′DC=90°,根据特殊角的锐角三角函数值即可解答.
解答:根据题意,得△ABD≌△A′BD.
则∠BA′D=∠A=120°,A′D=AD.
∴∠CA′D=60°.
∵△ABC中,AB=AC,∠BAC=120°,
∴∠C=∠ABC=30°.
∴∠A′DC=90°.
在直角三角形中,tanC=A′D:DC=1:
即AD:DC=1:
故答案为1:
点评:此题综合运用了折叠的性质、全等三角形的性质、等腰三角形的性质、三角形的内角和定理以及特殊角的锐角三角函数值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.
∵AD平分∠BAC,
∴∠BAD=∠
 
(角平分线的定义).
在△ABD和△ACD中,
(               )
(               )
(               )

∴△ABD≌△ACD
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,AB=AC,AD为BC边上的中线,BE为AC边上的高,
(1)在图中作出中线AD(要求用尺规作图,保留作图痕迹,不写作法与证明);
(2)设AD,BE交于点F,若∠ABC=70°,求∠DFB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.
∵AD平分∠BAC
∴∠
BAD
BAD
=∠
CAD
CAD
(角平分线的定义)
在△ABD和△ACD中

∴△ABD≌△ACD
SAS
SAS

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知△ABC中,AB=17cm,BC=30cm,BC边上的中线AD=8cm.求证:△ABC是等腰三角形.

查看答案和解析>>

同步练习册答案