精英家教网 > 初中数学 > 题目详情
如图,OA=OB,OC=OD,∠O=60°,∠C=25°,∠BED的度数是(  )
分析:证△ODA≌△OCB,推出∠D=∠C=25°,根据三角形外角性质求出∠DBE,根据三角形内角和定理求出即可.
解答:解:在△ODA和△OCB中
OD=OC
∠O=∠O
OA=OB

∴△ODA≌△OCB(SAS),
∴∠D=∠C=25°,
∵∠O=60°,∠C=25°,
∴∠DBE=60°+25°=85°,
∴∠BED=180°-85°-25°=70°,
故选D.
点评:本题考查了全等三角形的性质和判定,三角形外角性质,三角形的内角和定理的应用,主要考查学生的推理和计算能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•玉田县一模)如图,OA⊥OB,△CDE的边CD在OB上,∠ECD=45°.将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则
OC
CE
的值为
1
2
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OA=OB,OC=OD,∠O=50°,∠D=30°,则∠AEC等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OA⊥OB,OC⊥OD,O是垂足,∠BOC=55°,那么∠AOD=
135°
135°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OA⊥OB,∠COD为平角,若OC平分∠AOB,则∠BOD=
135
135
°.

查看答案和解析>>

同步练习册答案