精英家教网 > 初中数学 > 题目详情

如图,△ABC的面积为3,∠B=15°,点D在边BC上,DA⊥AB.设BC=x,BD=y.则y关于x的函数解析式为________,定义域为________.

    
分析:首先过点A作AH⊥BD于点H,根据△ABC的面积是3表示出AH,再利用BD及15°的正弦值与余弦值表示出AH,然后整理求解即可得到y与x之间的函数解析式;又由点D在边BC上,可得x≥y,继而求得定义域.
解答:解:过点A作AH⊥BD于点H,
则S△ABC=BC•AH=3,
∵BC=x,
∴AH=
又∵AH=ABsin15°=BDcos15°•sin15°,
∴AH=ycos15°•sin15°,
即:=ycos15°•sin15°=y××
∴y=
由点D在边BC上,
∴x≥y,
即x≥
∵x>0,
∴x2≥24,
即x≥2
∴定义域为x≥2
故答案为:y=,x≥2
点评:此题考查了三角形面积的求解方法与三角函数的知识.此题难度适中,解题的关键是准确作出辅助线,掌握三角形面积的求解方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的面积是63,D是BC上的一点,且BD:CD=2:1,DE∥AC交AB于E,延长DE到F,使FE:ED=2:1,则△CDF的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为
 
,再分别取A1C、B1C的中点A2、B2,A2C、B2C的中点A3、B3,依次取下去….利用这一图形,能直观地计算出
3
4
+
3
42
+
3
43
+…+
3
4n
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的面积为
2
,且AB=AC,将△ABC沿CA方向平移CA长度得到△EFA.
(1)试判断四边形BAEF的形状,并说明理由;
(2)若∠BEC=22.5°,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

3、如图,△ABC的面积为1,若把△ABC的各边分别延长一倍,得到一个新的△DEF,则S△DEF=
7

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连结A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连结A2,B2,C2,得到△A2B2C2.…按此规律,要使得到的三角形的面积超过2013,最少经过
4
4
次操作.

查看答案和解析>>

同步练习册答案