精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰三角形底边的长为,面积是,腰的垂直平分线于点,若边上的中点,为线段上一动点,则的周长的最小值为(

A.B.C.D.

【答案】D

【解析】

连接AD,由于△ABC是等腰三角形,点DBC边的中点,故ADBC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.

连接AD

∵△ABC是等腰三角形,点DBC边的中点,

ADBC

SABC=BCAD=×4×AD=12,解得AD=6cm

EF是线段AB的垂直平分线,

∴点B关于直线EF的对称点为点A

AD的长为BM+MD的最小值,

∴△BDM的周长最短=BM+MD+BD=AD+BC=6+×4=6+=8cm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AC,EB=EC,AE的延长线交BCD,则图中全等的三角形共有_____对.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在EBD中,EB=ED,CBD上,CE=CDBECEACE延长线上一点,EA=EC.

1)求∠EBC的度数;

2)求证ABC为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,点DBC边上,点EAC的延长线上,DEDA

(1)求证:∠BAD=∠EDC

(2)作出点E关于直线BC的对称点M,连接DMAM,猜想DMAM的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将任意两点P(x1,y1)与Q(x2,y2)之间的“直距”定义为:DPQ=|x1﹣x2|+|y1﹣y2|.

例如:点M(1,﹣2),点N(3,﹣5),则DMN=|1﹣3|+|﹣2﹣(﹣5)|=5.已知点A(1,0)、点B(﹣1,4).

(1)则DAO=  ,DBO=  

(2)如果直线AB上存在点C,使得DCO为2,请你求出点C的坐标;

(3)如果⊙B的半径为3,点E为⊙B上一点,请你直接写出DEO的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:学习了分式运算后,老师布置了这样一道计算题:,甲、乙两位同学的解答过程分别如下:

甲同学:

乙同学:

老师发现这两位同学的解答过程都有错误.

请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.

1)我选择________同学的解答过程进行分析. (填

2)该同学的解答从第________步开始出现错误(填序号),错误的原因是________

3)请写出正确解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为锅线,锅口直径为锅深,锅盖高(锅口直径与锅盖直径视为相同),建立直角坐标系如图所示(图是备用图),如果把锅纵断面的抛物线记为,把锅盖纵断面的抛物线记为

的解析式;

如果炒菜锅时的水位高度是,求此时水面的直径;

如果将一个底面直径为,高度为的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB∥CDCEBE的交点为E,现作如下操作:

第一次操作,分别作∠ABE∠DCE的平分线,交点为E1

第二次操作,分别作∠ABE1∠DCE1的平分线,交点为E2

第三次操作,分别作∠ABE2∠DCE2的平分线,交点为E3

n次操作,分别作∠ABEn1∠DCEn1的平分线,交点为En

∠En=1度,那∠BEC等于   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在等边中,点DE分别在边BCAB上,且ADCE交于点F,则的度数为  

A.B.C.D.

查看答案和解析>>

同步练习册答案