精英家教网 > 初中数学 > 题目详情

【题目】我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为锅线,锅口直径为锅深,锅盖高(锅口直径与锅盖直径视为相同),建立直角坐标系如图所示(图是备用图),如果把锅纵断面的抛物线记为,把锅盖纵断面的抛物线记为

的解析式;

如果炒菜锅时的水位高度是,求此时水面的直径;

如果将一个底面直径为,高度为的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.

【答案】 此时水面的直径为锅盖能正常盖上,理由见解析.

【解析】

(1)已知ABCD四点坐标,利用待定系数法即可确定两函数的解析式;
(2)炒菜锅里的水位高度为1dmy=-2,列方程求得x的值即可得答案;
(3)底面直径为3dm、高度为3dm圆柱形器皿能否放入锅内,需判断当时,C1C2中的y值的差与3比较大小,从而可得答案.

由于抛物线都过点,可设它们的解析式为:

抛物线还经过

则有:,解得:

即:抛物线

抛物线还经过

则有:,解得:

即:抛物线

当炒菜锅里的水位高度为时,,即

解得:

∴此时水面的直径为

锅盖能正常盖上,理由如下:

时,抛物线,抛物线

∴锅盖能正常盖上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).

(1)求小敏到旗杆的距离DF.(结果保留根号)

(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某移动通讯公司有两种移动电话计费方式,这两种计费方式中月使用费y(元)与主叫时间x(分)的对应关系如图所示:(主叫时间不到1分钟,按1分钟收费)下列三个判断中正确的是(  )

①方式一每月主叫时间为300分钟时,月使用费为88元

②每月主叫时间为350分钟和600分钟时,两种方式收费相同

③每月主叫时间超过600分钟,选择方式一更省钱

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形底边的长为,面积是,腰的垂直平分线于点,若边上的中点,为线段上一动点,则的周长的最小值为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题

从甲市到乙市乘坐高铁路程为150千米,乘坐普通列车的路程为250千米。高铁的平均速度是普通列车平均速度的3倍,高铁的乘车时间比普通列车的乘车时间缩短了2小时,高铁的平均速度是每小时多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=36°,AC=AB=2,将△ABC绕点B逆时针方向旋转得到△DBE,使点E在边AC上,DEAB于点F,则△AFE△DBF的面积之比等于(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们规定正数的正分数指数幂的意义(a>0,m,n是正整数,且n.>1)如于是,在条件a>0,m,n是正整数,且n.>1下,根式都可以写成分数指数幂的形式正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定 ,规定了分数指数幂的意义以后,指数的概念就从整数指数推广到了有理数指数整数指数幂的运算性质对于有理数指数幂也同样适用根据上述定义,解答下面的问题:

(1)求值:=____, _____=

(2)计算:_____;

(3)用分数指数幂的形式表:

(4),求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y.

(1)计算由x、y确定的点(x,y)在函数y=﹣x+6图象上的概率;

(2)小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?

查看答案和解析>>

同步练习册答案