精英家教网 > 初中数学 > 题目详情

【题目】我们规定正数的正分数指数幂的意义(a>0,m,n是正整数,且n.>1)如于是,在条件a>0,m,n是正整数,且n.>1下,根式都可以写成分数指数幂的形式正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定 ,规定了分数指数幂的意义以后,指数的概念就从整数指数推广到了有理数指数整数指数幂的运算性质对于有理数指数幂也同样适用根据上述定义,解答下面的问题:

(1)求值:=____, _____=

(2)计算:_____;

(3)用分数指数幂的形式表:

(4),求的值.

【答案】(1)8;;(2)1;(3);(4)23.

【解析】

本题是典型的指数幂的概念问题,由题意知,正数的分数指数幂是有意义的,0的正分数指数幂等于0,0的负分数指数幂没有意义,然后利用指数幂的运算法则计算即可.

(1)8

(2)1

(3)

4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知是等边三角形,点的中点,点在射线上,点在射线上,.

1)如图1,若点点重合,求证:

2)如图2,若点在线段上,点在线段上,求的值;

3)如图3,若,直接写出的度数为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将任意两点P(x1,y1)与Q(x2,y2)之间的“直距”定义为:DPQ=|x1﹣x2|+|y1﹣y2|.

例如:点M(1,﹣2),点N(3,﹣5),则DMN=|1﹣3|+|﹣2﹣(﹣5)|=5.已知点A(1,0)、点B(﹣1,4).

(1)则DAO=  ,DBO=  

(2)如果直线AB上存在点C,使得DCO为2,请你求出点C的坐标;

(3)如果⊙B的半径为3,点E为⊙B上一点,请你直接写出DEO的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为锅线,锅口直径为锅深,锅盖高(锅口直径与锅盖直径视为相同),建立直角坐标系如图所示(图是备用图),如果把锅纵断面的抛物线记为,把锅盖纵断面的抛物线记为

的解析式;

如果炒菜锅时的水位高度是,求此时水面的直径;

如果将一个底面直径为,高度为的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,则CD=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB∥CDCEBE的交点为E,现作如下操作:

第一次操作,分别作∠ABE∠DCE的平分线,交点为E1

第二次操作,分别作∠ABE1∠DCE1的平分线,交点为E2

第三次操作,分别作∠ABE2∠DCE2的平分线,交点为E3

n次操作,分别作∠ABEn1∠DCEn1的平分线,交点为En

∠En=1度,那∠BEC等于   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知在△ABC中,AB=AC,DBC边的中点,过点DDEAB,DFAC,垂足分别为E,F.

(1)求证:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面内有一等腰RtABC,ACB=90°,点A在直线l上.过点CCE1于点E,过点BBFl于点F,测量得CE=3,BF=2,则AF的长为(  )

A. 5 B. 4 C. 8 D. 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ABC=90°,以AB为直径的⊙OAC边交于点D,过点D作⊙O的切线交BC于点E,连接OE

(1)证明OEAD;

(2)①当∠BAC=   °时,四边形ODEB是正方形.

②当∠BAC=   °时,AD=3DE.

查看答案和解析>>

同步练习册答案