精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.

(1)求抛物线的解析式;

(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将RtACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;

(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.

【答案】(1)抛物线解析式为y=﹣x2+4x+5;(2)m的值为7或9;(3)Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).

【解析】

试题分析:(1)由A、B的坐标,利用待定系数法可求得抛物线的解析式;

(2)由题意可求得C点坐标,设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可求得C′点的坐标,则可求得平移的单位,可求得m的值;

(3)由(2)可求得E点坐标,连接BE交对称轴于点M,过E作EFx轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,则可证得PQN≌△EFB,可求得QN,即可求得Q到对称轴的距离,则可求得Q点的横坐标,代入抛物线解析式可求得Q点坐标;当BE为对角线时,由B、E的坐标可求得线段BE的中点坐标,设Q(x,y),由P点的横坐标则可求得Q点的横坐标,代入抛物线解析式可求得Q点的坐标.

试题解析:(1)抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,

,解得

抛物线解析式为y=﹣x2+4x+5;

(2)AD=5,且OA=1,

OD=6,且CD=8,

C(﹣6,8),

设平移后的点C的对应点为C′,则C′点的纵坐标为8,

代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3,

C′点的坐标为(1,8)或(3,8),

C(﹣6,8),

当点C落在抛物线上时,向右平移了7或9个单位,

m的值为7或9;

(3)y=﹣x2+4x+5=﹣(x﹣2)2+9,

抛物线对称轴为x=2,

可设P(2,t),

由(2)可知E点坐标为(1,8),

当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EFx轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,如图,

BEF=BMP=QPN,

PQN和EFB中

∴△PQN≌△EFB(AAS),

NQ=BF=OB﹣OF=5﹣1=4,

设Q(x,y),则QN=|x﹣2|

|x﹣2|=4,解得x=﹣2或x=6,

当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,

Q点坐标为(﹣2,﹣7)或(6,﹣7);

当BE为对角线时,

B(5,0),E(1,8),

线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),

设Q(x,y),且P(2,t),

x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,

Q(4,5);

综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图ABCACBC10 cmAB12 cmDAB的中点连结CD动点P从点A出发沿ACB的路径运动到达点B时运动停止速度为每秒2 cm设运动时间为

1CD的长

2为何值时ADP是直角三角形

3直接写出为何值时ADP是等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点EF分别在BCCD上,AEF是等边三角形,连接ACEFG,下列结论:BE=DF②∠DAF=15°AC垂直平分EFBE+DF=EF ,其中正确结论有

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线ABCDMN分别在直线ABCDE为平面内一点.

(1)如图1BMEEEND的数量关系为 (直接写出答案)

(2)如图2BMEEF平分∠MENNP平分∠ENDEQNP求∠FEQ的度数(用用含m的式子表示)

(3)如图3GCD上一点BMNEMNGEKGEMEHMNAB于点H探究∠GEKBMNGEH之间的数量关系(用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列算式中,结果等于a5的是(  )

A. a2+a3 B. a2a3 C. a5÷a D. (a23

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与x轴交于A(﹣1,0)、B(4,0)两点,与y轴交于点C(0,3).

(1)求抛物线的解析式;

(2)在x轴下方的抛物线上是否存在一点P,使△PAB的面积等于△ABC的面积?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:

参加社区活动次数的频数、频率分布表

根据以上图表信息,解答下列问题:

1)表中a= b=

2)请把频数分布直方图补充完整(画图后请标注相应的数据);

3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a=﹣2时,求a22a+1)=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).

(1)如图1,若BC=4m,则S=_______m2

(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为________m.

查看答案和解析>>

同步练习册答案