精英家教网 > 初中数学 > 题目详情

如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.

 

(1)如图1,若m=

当OC=2时,求抛物线C2的解析式;

是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;

(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).

 

(1) ①y=﹣x2+x+2.(2)P1﹣m,1),P2﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).

【解析】

试题分析:(1)首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C(0,2)在C2上,求出抛物线C2的解析式;

认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OPBC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;

(2)解题要点有3个:

i)判定ABD为等边三角形;

ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;

iii)满足条件的点有4个,即ABD形内1个(内心),形外3个.不要漏解.

试题解析:(1)当m=时,抛物线C1:y=(x+2

抛物线C2的顶点D在抛物线C1上,且横坐标为a,

D(a,(a+2).

抛物线C2:y=﹣(x﹣a)2+(a+2 (I).

①∵OC=2,C(0,2).

点C在抛物线C2上,

﹣(0﹣a)2+(a+2=2,

解得:a=,代入(I)式,

得抛物线C2的解析式为:y=﹣x2+x+2.

在(I)式中,

令y=0,即:﹣(x﹣a)2+(a+2=0,解得x=2a+或x=﹣B(2a+,0);

令x=0,得:y=a+C(0,a+).

设直线BC的解析式为y=kx+b,则有:

,解得

直线BC的解析式为:y=﹣x+(a+).

假设存在满足条件的a值.

AP=BP,

点P在AB的垂直平分线上,即点P在C2的对称轴上;

点B与点C到直线OP的距离之和≤BC,只有OPBC时等号成立,

OPBC.

如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,

则OPBC,OE=a.

点P在直线BC上,

P(a,a+),PE=a+

tanEOP=tanBCO=

解得:a=

存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP

(3)抛物线C2的顶点D在抛物线C1上,且横坐标为a,

D(a,(a+m)2).

抛物线C2:y=﹣(x﹣a)2+(a+m)2

令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,B(2a+m,0).

OB=2﹣m,

2a+m=2﹣m,

a=﹣m.

D(﹣m,3).

AB=OB+OA=2﹣m+m=2

图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.

tanABD=

∴∠ABD=60°.

AD=BD,∴△ABD为等边三角形.

ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,

P1﹣m,1);

ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4

在RtBEP2中,P2E=BE•tan60°==3,

P2﹣m,﹣3);

易知ADP3BDP4均为等边三角形,DP3=DP4=AB=2,且P3P4x轴.

P3(﹣﹣m,3)、P4(3﹣m,3).

综上所述,到ABD的三边所在直线的距离相等的所有点有4个,

其坐标为:P1﹣m,1),P2﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).

【考点】二次函数综合题.

 

练习册系列答案
相关习题

科目:初中数学 来源:2014年初中毕业升学考试(贵州黔西卷)数学(解析版) 题型:填空题

如图,将矩形纸片ABCD折叠,使边AB、CD均落在对角线BD上,得折痕BE、BF,则EBF=

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(贵州贵阳卷)数学(解析版) 题型:选择题

贵阳市中小学幼儿园“爱心助残工程”第九届助残活动于2014年5月在贵阳市盲聋哑学校举行,活动当天,贵阳市盲聋哑学校获得捐赠的善款约为150000元150000这个数用科学记数法表示为( )

A15×104 B15×105 C15×106 D15×104

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(贵州六盘水卷)数学(解析版) 题型:填空题

PM2.5是指大气中的直径小于或等于0.0000025米(2.5微米)的有毒有害物质.0.0000025米用科学记数法表示为:   

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(贵州六盘水卷)数学(解析版) 题型:选择题

下列运算正确的是(  )

A2mn)2=4m2n2 By2+y2=2y4

C(ab)2=a2b2 Dm2+m=m3

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(福建莆田卷)数学(解析版) 题型:解答题

如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.

(1)求证:BE=CE;

(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,EBD=30°,求图中阴影部分(扇形)的面积.

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(福建莆田卷)数学(解析版) 题型:填空题

在一次数学测试中,小明所在小组6人的成绩(单位:分)分别为84、79、83、87、77、81,则这6人本次数学测试成绩的中位数是 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(福建南平卷)数学(解析版) 题型:解答题

在2014年巴西世界杯足球赛开幕之前,某校团支部为了解本校学生对世界杯足球赛的关注情况,随机调查了部分学生对足球运动的喜欢程度,绘制成如下的两幅不完整的统计图.

请你根据以上统计图提供的信息,回答下列问题:

(1)随机抽查了   名学生;

(2)补全图中的条形图;

(3)若全校共有500名学生,请你估计全校大约有多少名学生喜欢(含“较喜欢”和“很喜欢”)足球运动.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(福建三明卷)数学(解析版) 题型:选择题

如图是由5个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的主视图是(  )

 

 

查看答案和解析>>

同步练习册答案