精英家教网 > 初中数学 > 题目详情
如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连结CC′交斜边于点E,CC′的延长线交BB′于点F。

(1)若AC=3,AB=4,求
(2)证明:△ACE∽△FBE;
(3)设∠ABC=,∠CAC′=,试探索满足什么关系时,△ACE与△FBE是全等三角形,并说明理由。
(1)(2)可知△CAC′∽△BAB′,∴∠ACE=∠EBF,而∠AEC=∠BEF
∴△ACE∽△FBE(3)=时△ACE≌△FBE。

试题分析:解(1)∵Rt△AB′C′是由Rt△ABC绕点A旋转得到的
∴AC=AC′,∠CAC′=∠BAB′,AB=AB′,∴
∴△CAC′∽△BAB′,∴      
(2)由(1)可知△CAC′∽△BAB′,∴∠ACE=∠EBF,而∠AEC=∠BEF
∴△ACE∽△FBE      
(3)当=2时,△ACE与△FBE全等
由(1)可知△CAC′是等腰三角形,∠ACC′=
∴∠BCE=90°-∠ACC′==,∠ABC=,∴∠BCE=∠ABC
∴BE=CE,又△ACE∽△FBE,∴△ACE≌△FBE    
点评:本题难度中等,主要考查学生对相似三角形性质与全等三角形判定等知识点的掌握与运用能力,为中考常考题型,要注意数形结合应用。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

△ABC的三边长分别为、b、c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③;④,其中能判断△ABC是直角三角形的个数有(     )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:

(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)中正确的有
A.  4个        B.  3个       C.  2个        D.  1个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知△A1B1C1与△A2B2C2的周长相等,现有两个判断:
①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2
②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2
对于上述的两个判断,下列说法正确的是
A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是
A.8或B.10或C.10或D.8或

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,∠A=104°,∠ABC=76°,BD⊥CD于点D,EF⊥CD于点F,你能说明∠1=∠2吗?试一试。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,下列条件中,能判定DE//AC的是(   )
A.∠BED=∠EFCB.∠1=∠2C.∠3=∠4D.∠BEF+∠B=180°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子顶端B到地面距离为7m,现将梯子的底端A向外移动到A’,使梯子的底端A’到墙根O的距离等于3m,同时梯子的顶端B下降至B’,那么BB’的长为
A.等于1mB.大于1mC.小于1mD.以上答案都不对

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图是矩形ABCD折叠的情况,将△ADE沿AE折叠后,点D正好落在BC边上的F处,已知AB=8,AD=10.则△AEF的面积是          .

查看答案和解析>>

同步练习册答案