【题目】如图1,一超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1∶2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为37°,则二楼的层高BC约为(精确到0.1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)( )
图1 图2
A. 4米 B. 3.6米 C. 2.2米 D. 4.6米
科目:初中数学 来源: 题型:
【题目】如图,点A是双曲线y=(x>0)上的一动点,过A作AC⊥y轴,垂足为点C,作AC的垂直平分线交双曲线于点B,交x轴于点D.当点A在双曲线上从左到右运动时,对四边形ABCD的面积的变化情况,小明列举了四种可能:
①逐渐变小;
②由大变小再由小变大;
③由小变大再由大变小;
④不变.
你认为正确的是_____.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P为拋物线为常数,)上任意一点,将抛物线绕顶点G逆时针旋转90°后得到的图象与轴交于A、B两点(点A在点B的上方),点Q为点P旋转后的对应点.
(1)抛物线的对称轴是直线________,当m=2时,点P的横坐标为4时,点Q的坐标为_________;
(2)设点Q请你用含m,的代数式表示则________;
(3)如图,点Q在第一象限,点D在轴的正半轴上,点C为OD的中点,QO平分∠AQC,当AQ=2QC,QD=时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某批乒乓球的质量检验结果如下:
抽取的乒乓球数n | 200 | 500 | 1000 | 1500 | 2000 |
优等品频数m | 188 | 471 | 946 | 1426 | 1898 |
优等品频率 | 0.940 | 0.942 | 0.946 | 0.951 | 0.949 |
(1)画出这批乒乓球“优等品”频率的折线统计图;
(2)这批乒乓球“优等品”的概率的估计值是多少?
(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.
①求从袋中摸出一个球是黄球的概率;
②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于, 问至少取出了多少个黑球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y=(k≠0)的图象经过点A(﹣2,m),过点A作AB⊥x轴于点B,且△AOB的面积为4.
(Ⅰ)求k和m的值;
(Ⅱ)设C(x,y)是该反比例函数图象上一点,当1≤x≤4时,求函数值y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料一:把一个自然数的个位数字截去,再用余下的数减去个位数的2倍,如果差是7的倍数,则原数能被7整除.如果差太大不易看出是否7的倍数,可重复上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.例如,判断392是否7的倍数的过程如下:,,所以,392是7的倍数;又例如判断8638是否7的倍数的过程如下:,,,所以,8638是7的倍数.
材料二:若一个四位自然数n满足千位与个位相同,百位与十位相同,我们称这个数为“对称数”.将“对称数”n的前两位与后两位交换位置得到一个新的“对称数”,记,例如.
(1)请用材料一的方法判断6909与367能不能被7整除;
(2)若m、p是“对称数”,其中,(,且a,b,c均为整数),若m能被7整除,且,求p.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
(1)判断直线AC与圆O的位置关系,并证明你的结论;
(2)若AC=8,cos∠BED=,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=_____,…按此规律,写出tan∠BAnC=_____(用含n的代数式表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com