分析 首先利用HL定理判定Rt△ABF≌Rt△ACF,然后证明△ABD≌△ACE,Rt△ADF≌Rt△AEF,最后在证明△ABE≌△ACD即可.
解答 解:∵AF⊥BC,
∴∠AFB=∠AFC=90°,
在Rt△ABF和Rt△ACF中$\left\{\begin{array}{l}{AB=AC}\\{AF=AF}\end{array}\right.$,
∴Rt△ABF≌Rt△ACF(HL),
∴∠B=∠C,
在△ABD和△ACE中$\left\{\begin{array}{l}{AB=AC}\\{∠B=∠C}\\{BD=CE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴AD=AE,
在Rt△ADF和Rt△AEF中$\left\{\begin{array}{l}{AD=AE}\\{AF=AF}\end{array}\right.$,
∴Rt△ADF≌Rt△AEF(HL),
∵BD=CE,
∴CD=BE,
在△ABE和△ACD中$\left\{\begin{array}{l}{AB=AC}\\{EB=CD}\\{AD=AE}\end{array}\right.$,
∴△ABE≌△ACD(SSS),
共4对,
故答案为:4.
点评 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 5发全中 | B. | 一定中4发 | C. | 一发不中 | D. | 可能中3发 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com