【题目】在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD. 旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)
若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.
【答案】解:图2结论:AC′=BD′,AC′⊥BD′, 理由:∵四边形ABCD是正方形,
∴AO=OC,BO=OD,AC⊥BD,
∵将Rt△COD旋转得到Rt△C′OD′,
∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,
∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,
在△AOC′与△BOD′中, ,
∴△AOC′≌△BOD′,
∴AC′=BD′,∠OAC′=∠OBD′,
∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,
∴∠O′AC′+∠AO′D′=90°,
∴AC′⊥BD′;
图3结论:BD′= AC′,AC′⊥BD’
理由:∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO,
∵∠ABC=60°,
∴∠ABO=30°,
∴OB= OA,OD= OC,
∵将Rt△COD旋转得到Rt△C′OD′,
∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,
∴OD′= OC′,∠AOC′=∠BOD′,
∴ = ,
∴△AOC′∽△BOD′,
∴ = = ,∠OAC′=∠OBD′,
∴BD′= AC′,
∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,
∴∠O′AC′+∠AO′D′=90°,
∴AC′⊥BD′.
【解析】图2:根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论; 图3:根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB= OA,OD= OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′= OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′= AC′,于是得到结论.
【考点精析】通过灵活运用菱形的性质和正方形的性质,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y= 的图象于点B,AB= .
(1)求反比例函数的解析式;
(2)若P(x1 , y1)、Q(x2 , y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2 , 指出点P、Q各位于哪个象限?并简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.
(1)求证:CD与⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是( )
A.△AEE′是等腰直角三角形
B.AF垂直平分EE'
C.△E′EC∽△AFD
D.△AE′F是等腰三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电视台在它的娱乐性节目中每期抽出两名场外幸运观众,有一期甲、乙两人被抽为场外幸运观众,他们获得了一次抽奖的机会,在如图所示的翻奖牌的正面4个数字中任选一个,选中后翻开,可以得到该数字反面的奖品,第一个人选中的数字第二个人不能再选择了.
(1)如果甲先抽奖,那么甲获得“手机”的概率是多少?
(2)小亮同学说:甲先抽奖,乙后抽奖,甲、乙两人获得“手机”的概率不同,且甲获得“手机”的概率更大些.你同意小亮同学的说法吗?为什么?请用列表或画树状图分析.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是( )
A.BO=OH
B.DF=CE
C.DH=CG
D.AB=AE
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com