精英家教网 > 初中数学 > 题目详情

【题目】解下面各题
(1)解方程:x2﹣4x﹣12=0;
(2)解不等式组:

【答案】
(1)解:(x﹣6)(x+2)=0,

x﹣6=0或x+2=0,

所以x1=6,x2=﹣2;


(2)解:

解①得x≥﹣1,

解②得x<4,

所以不等式组的解集是﹣1≤x<4.


【解析】(1)利用因式分解法解方程;(2)分别解两个不等式得到x≥﹣1和x<4,然后根据大小小大中间找确定不等式组的解集.
【考点精析】本题主要考查了一元一次不等式组的解法的相关知识点,需要掌握解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理过程,请填空.

解:∵OA⊥OB(已知)

所以_____=90°________

因为_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,

所以______=_____(等量代换)

所以______=90°

所以OC⊥OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(0,n),以点B为直角顶点,点C在第二象限内,作等腰直角△ABC.则点C的坐标是_____(用字母n表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,使得AB=AC.
(1)求证:AB是⊙O的切线;
(2)PC=2 ,OA=4. ①求⊙O的半径;
②求线段PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律,经过第2015次运动后,动点P的坐标是____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分别为垂足,则下列四个结论:①∠DEF=∠DFE; ②AE=AF; ③AD平分∠EDF; ④AD垂直平分EF.其中正确结论有()

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,点D是射线CB上的一动点(不与点BC重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE

(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;

(2)设∠BAC= ,∠DCE=

① 如图2,当点D在线段CB上,∠BAC≠90°时,请你探究之间的数量关系,并证明你的结论;

② 如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时之间的数量关系(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在锐角ABC中,ABC=45°,高线AD、BE相交于点F.

(1)判断BF与AC的数量关系并说明理由;

(2)如图2,将ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DEAM时,判断NE与AC的数量关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数形结合"是一种重要的数学思想,观察下面的图形和算式.

解答下列问题:

(1)试猜想1+3+5+7+9+…+19=______=( );

(2)试猜想,当n是正整数时,1+3+5+7+9+…+(2n-1)=

(3)请用(2)中得到的规律计算:19+21+23+25+27+…+99.

查看答案和解析>>

同步练习册答案