【题目】在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;
(2)设∠BAC= ,∠DCE= .
① 如图2,当点D在线段CB上,∠BAC≠90°时,请你探究与之间的数量关系,并证明你的结论;
② 如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时与之间的数量关系(不需证明).
【答案】(1) 90 ;(2)①, 理由见解析;②图形见解析,
【解析】试题分析:(1)利用等腰三角形证明ABDACE,所以∠ECA=∠DBA,所以∠DCE=90°.(2)方法类似(1)证明△ABD≌△ACE,所以∠B=∠ACE,再利用角的关系求. (3)同理方法类似(1).
试题解析:
解:(1) 90 度.
∠DAE=∠BAC ,所以∠BAD=∠EAC,AB=AC,AD=AE,所以ABDACE,所以∠ECA=∠DBA,所以∠ECA=90°.
(2)①.
理由:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,
又AB=AC,AD=AE,
∴△ABD≌△ACE,
∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,
∴.∵,
∴.
(3)补充图形如下, .
科目:初中数学 来源: 题型:
【题目】一股民上星期五买进某公司股票股,每股元,下表为本周内每日该股票的涨跌情况(单位:元)
星期 | 一 | 二 | 三 | 四 | 五 |
每股涨跌 |
星期三收盘时,每股是________元;
本周内每股最高价为________元,每股最低价为________元;
已知该股民买进股票时付了‰的手续费,卖出时还需付成交额‰的手续费和‰的交易锐,如果该股民在星期五收盘前将全部股票卖出,他的收益情况如何?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CE是圆O的直径,⊙O的直径,AB为⊙O的弦,EC⊥AB,垂足为D,下面结论正确的有( ) ①AD=BD;② = ;③ = ;④OD=CD.
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图所示.
(1)这个几何体由 个小正方体组成,请画出这个几何体的三视图;
(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 个正方体只有一个面是黄色,有 个正方体只有两个面是黄色,有 个正方体只有三个面是黄色;
(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016.镇江)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.
(1)若∠ABC=35°,求∠CAO的度数;
(2)求证:CO=DO
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的不等式为y=﹣x2+6x+c.
(1)若抛物线与x轴有交点,求c的取值范围;
(2)设抛物线与x轴两个交点的横坐标分别为x1 , x2 . 若x12+x22=26,求c的值.
(3)若P,Q是抛物线上位于第一象限的不同两点,PA,QB都垂直于x轴,垂足分别为A,B,且△OPA与△OQB全等.求证:c>﹣ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点P(m,n)在第一象限,且在直线y=-x+6上,点A的坐标为(5,0),O是坐标原点,△PAO的面积是S.
(1)求S与m的函数关系式,并画出函数S的图象;
(2)小杰认为△PAO的面积可以为15,你认为呢?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com