精英家教网 > 初中数学 > 题目详情

下列计算:(1)an•an=2an,(2)a6+a6=a12,(3)c•c5=c5,(4)26+26=27,(5)(3xy33=9x3y9中,正确的个数为(  )

A.0个  B.1个   C.2个  D.3个

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,过点A与x轴平行的直线交抛物线y=于点B、C,线段BC的长度为6,抛物线y=﹣2x2+b与y轴交于点A,则b=(  )

A.1       B.4.5    C.3       D.6

查看答案和解析>>

科目:初中数学 来源: 题型:


先阅读再解题.

题目:如果(x﹣1)5=a1x5+a2x4+a3x3+a4x2+a5x+a6,求a6的值.

解这类题目时,可根据等式的性质,取x的特殊值,如x=0,1,﹣1…代入等式两边即可求得有关代数式的值.如:当x=0时,(0﹣1)5=a6,即a6=1.

请你求出下列代数式的值.

(1)a1+a2+a3+a4+a5

(2)a1﹣a2+a3﹣a4+a5

查看答案和解析>>

科目:初中数学 来源: 题型:


若3x=4,9y=7,则3x2y的值为      

查看答案和解析>>

科目:初中数学 来源: 题型:


某种细菌的直径是0.00000058厘米,用科学记数法表示为      厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:


.数学活动课上,老师提出这样一个问题:如果AB=BC,∠ABC=60°,∠APC=30°,连接PB,那么PA、PB、PC之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:

小蕾:我将图形进行了特殊化,让点P在BA延长线上(如图1),得到了一个猜想:PA2+PC2=PB2

小东:我假设点P在∠ABC的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△PAB后得到△P′CB,并且可推出△PBP′,△PCP′分别是等边三角形、直角三角形,就能得到猜想和证明方法.

这时老师对同学们说,请大家完成以下问题:

(1)如图2,点P在∠ABC的内部,

①PA=4,PC=,PB=      

②用等式表示PA、PB、PC之间的数量关系,并证明.

(2)对于点P的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是      

查看答案和解析>>

科目:初中数学 来源: 题型:


图1中,二次函数y=﹣ax2﹣4ax﹣的图象c交x轴于A,B两点(A在B的左侧),过A点的直线交c于另一点C(x1,y1),交y轴于M.

(1)求点A的坐标,并求二次函数的解析式;

(2)过点B作BD⊥AC交AC于D,若M(0,﹣3)且Q点是直线AC上的一个动点.求出当△DBQ与△AOM相似时点Q的坐标;

(3)设P(﹣1,2),图2中连CP交二次函数的图象于另一点E(x2,y2),连AE交y轴于N.OM•ON是否是一个定值?如果是定值,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为      

 

查看答案和解析>>

同步练习册答案