精英家教网 > 初中数学 > 题目详情

【题目】在三个完全相同的小球上分别写上-2-12三个数字,然后装入一个不透明的布袋内搅匀,从布袋中取出一个球,记下小球上的数字为,放回袋中再搅匀,然后再从袋中取出一个小球,记下小球上的数字为,组成一对数.

1)请用列表或画树状图的方法,表示出数对的所有可能的结果;

2)求直线不经过第一象限的概率.

【答案】1)见解析;(2 .

【解析】

1)根据题意画出树状图,表示出数对(mn)的所有可能的结果即可;
2)由树状图求得所有等可能的结果与所得到的直线y=mx+n不经过第一象限的情况,再利用概率公式即可求解.

解:(1)树状图如下:

∴数对的所有可能为

2)直线不经过第一象限的概率为.

故答案为:(1)见解析;(2 .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】 在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字012;乙袋中的小球上分别标有数字﹣1,﹣21.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(xy).

1)请你用画树状图或列表的方法,写出点M所有可能的坐标;

2)求点Mxy)落在函数y=﹣的图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD和菱形BEFG中,点ABE在同一直线上,P是线段DF的中点,连接PGPC.若∠ABC=∠BEF60°,则_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBA和△EDC一定是全等三角形;②△EBD是等腰三角形,EBED;③折叠后得到的图形是轴对称图形;④折叠后∠ABE和∠CBD一定相等;其中正确的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,直角三角形OBD的直角顶点Dx轴正半轴上,B在第一象限,OBtanBOD2

(1)求图象经过点B的反比例函数的解析式.

(2)E(1)中反比例函数图象上一点,连接BEDE,若BEDE,求四边形OBED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线轴于点和点,交轴于点,一次函数的图象经过点,点是抛物线上第二象限内一点.

1)求二次函数和一次函数的表达式;

2)过点轴的平行线交于点,作的垂线于点,设点的横坐标为的周长为.

①求关于的函数表达式;

②求的周长的最大值及此时点的坐标;

3)如图2,连接,是否存在点,使得以为顶点的三角形与相似?若存在,直接写出点的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某区为了了解该区常驻市民对跑步、篮球、足球、羽毛球、舞蹈等体育项目的喜爱情况,在该区范围内随机抽取了若干名常驻市民,对他们喜爱以上的体育项目(每人只选一项)进行了问卷调查,将数据进行统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整)

1)在这次问卷调查中,一共抽查   名常驻市民,篮球项目所占圆心角的度数是   ;估计该区1200万常驻市民中有   人喜爱足球运动、有   人喜欢跑步;

2)补全频数分布直方图;

3)若这次问卷调查中喜欢跑步的人员中有1名男士,喜欢舞蹈的人员中有2名女士,现从喜欢跑步和喜欢舞蹈的人员中随机选取两名作区代表参加重庆市的竞技比赛,用列表法或树状图求所选的两名恰好是一位喜欢跑步的男士和一位喜欢舞蹈的女士的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将半径为4,圆心角为90°的扇形BACA点逆时针旋转60°,点BC的对应点分别为点DE且点D刚好在上,则阴影部分的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的xy的部分对应值如下表:

x

﹣3

﹣2

﹣1

0

1

2

3

4

5

y

12

5

0

﹣3

﹣4

﹣3

0

5

12

给出了结论:

(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;

(2)当﹣<x<2时,y<0;

(3)a﹣b+c=0;

(4)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧

则其中正确结论的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案