精英家教网 > 初中数学 > 题目详情
已知抛物线Y=x2-(m2+4)x-2m2-12
(1)证明:不论m取什么实数,抛物线必与x有两个交点
(2)m为何值时,x轴截抛物线的弦长L为12?
(3)m取什么实数,弦长最小,最小值是多少?
分析:(1)因为△=(m2+4)2-4×1×(-2m2-12),配方后得到△=(m2+8)2,而m2+8>0,得到△>0,即可得到结论;
(2)令y=0,则x2-(m2+4)x-2m2-12,解方程得到x1=m2+6,x2=-2,于是L=x1-x2=m2+6-(-2)=m2+8,令L=12得到m2+8=12,解方程即可得到m的值;
(3)由L=m2+8,根据二次函数的最值问题即可得到m=0时,L有最小值,最大值为8.
解答:解:(1)证明:△=b2-4ac=(m2+4)2-4×1×(-2m2-12)
=(m2+8)2
∵m2≥0,
∴m2+8>0,
∴△>0,
∴不论m取什么实数,抛物线必与x有两个交点;
(2)令y=0,x2-(m2+4)x-2m2-12,
∴x=
m2+4±
(m2+8) 2
2

∴x1=m2+6,x2=-2,
∴L=x1-x2=m2+6-(-2)=m2+8,
∴m2+8=12,解得m=±2,
∴m为2或-2时,x轴截抛物线的弦长L为12;
(3)L=m2+8,
∴m=0时,L有最小值,最小值为8.
点评:本题考查了二次函数的综合题:二次函数的顶点式y=a(x+h)2+k,当a>0,x=-h,函数有最小值k;当△>0时,二次函数与x轴有两个交点.也考查了一元二次方程的解法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案