精英家教网 > 初中数学 > 题目详情

已知:如图,在直角坐标系中,⊙C与y轴相切于点O,且C点的坐标为(1,0),直线l过点A(-1,0)与⊙C切于D点.D点坐标为________,在直线l上存在点P,使△APC为等腰三角形,则P点的坐标________.

)    (0,)(2,)(-1,1)
分析:(1)首先根据题中已给条件求出⊙C的方程表达式.然后设出直线1的方程表达式,根据直线l过点A(-1,0)与⊙C切于D点可以求出直线1的方程表达式,即可求出D点坐标.
(2)分别以A、P、C坐三角形顶点,求出不同情况下P点坐标.
解答:如图所示:
①已知:⊙C与y轴相切于点O,且C点的坐标为(1,0),所以可以求出⊙C的表达式为:(x-1)2+y2=1.
设直线1的表达式为:y=kx+b.
因为CD=1,AC=2,∠CDA=90°,所以∠DAC=30°,所以k=
将点A坐标代入得:=b.
所以直线1的方程式为:y=
将直线1的方程式代入⊙C中可得
所以点D坐标为
②以点P为顶点,PA=PC,可知P在y轴上,又因为P在直线1上,所以点P坐标为
以点A为顶点,AP=AC,所以AP=2,又因为∠PAC=30°,所以P到x轴距离为1,所以P点坐标为(,1),(,-1);
以点C为顶点,CA=CP,所以CP=2,同理可得P点坐标为(2,).
所以P点坐标为:(0,),(,1),(,-1),(2,).
点评:本题重要考查对于一次方程的应用,此外还用到直线与圆的知识,考查范围较广,第二问中的坐标要分别以3个点为顶点来求P点坐标,以避免遗漏.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1)已知,矩形ABDC的边AC=3,对角线长为5,将矩形ABDC置于直角坐系内,点D与原点O重合.且反比例函数y=
k
x
的图象的一个分支位于第一象限.
(1)求点A的坐标;
(2)若矩形ABDC从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数y=
k
x
的图象的图象上,求k的值;
(3)矩形ABCD继续向x轴的正方向移动,AB、AC与反比例函数图象分别交于P、Q如图(2),设移动的总时间为t(1<t<5),分别写出△BPD的面积S1、△DCQ的面积S2与t的函数关系式;
(4)在(3)的情况下,当t为何值时,S2=
10
7
S1

查看答案和解析>>

科目:初中数学 来源:2011-2012学年甘肃省兰州四中九年级(上)期中数学试卷(解析版) 题型:解答题

如图(1)已知,矩形ABDC的边AC=3,对角线长为5,将矩形ABDC置于直角坐系内,点D与原点O重合.且反比例函数y=的图象的一个分支位于第一象限.
(1)求点A的坐标;
(2)若矩形ABDC从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数y=的图象的图象上,求k的值;
(3)矩形ABCD继续向x轴的正方向移动,AB、AC与反比例函数图象分别交于P、Q如图(2),设移动的总时间为t(1<t<5),分别写出△BPD的面积S1、△DCQ的面积S2与t的函数关系式;
(4)在(3)的情况下,当t为何值时,S2=S1

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(四川巴中卷)数学(解析版) 题型:解答题

如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,

与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐

标为2,

(1)求一次函数和反比例函数的解析式;

(2)直接写出时x的取值范围。

 

查看答案和解析>>

科目:初中数学 来源:2013届安徽滁州八年级下期末模拟数学试卷(沪科版)(解析版) 题型:解答题

已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐

标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线=-交折线O-A-B于点E.

(1)在点D运动的过程中,若△ODE的面积为S,求S与的函数关系式,并写出自变量的取值范围;

(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.求证:四边形DMEN是菱形;

(3)问题(2)中的四边形DMEN中,ME的长为____________.

    

 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(广西钦州卷)数学 题型:解答题

(本题满分8分)已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.

    (1)如图①,当PA的长度等于 

时,∠PAB=60°;

              当PA的长度等于    时,△PAD是等腰三角形;

    (2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角

坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.坐

标为(ab),试求2 S1 S3-S22的最大值,并求出此时ab的值.

 

查看答案和解析>>

同步练习册答案