【题目】要使等式(x﹣y)2+M=(x+y)2成立,整式M应是( )
A. 2xy B. 4xy C. ﹣4xy D. ﹣2xy
科目:初中数学 来源: 题型:
【题目】如图,有下列判定,其中正确的有( ) ①若∠1=∠3,则AD∥BC;
②若AD∥BC,则∠1=∠2=∠3;
③若∠1=∠3,AD∥BC,则∠1=∠2;
④若∠C+∠3+∠4=180°,则AD∥BC.
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD中,AB=,BC=.某课题小组利用这张矩形纸片依次进行如下操作(每次折叠后均展开).
如图①,第一次将纸片折叠,使点B与点D重合,折痕与BD交与点O1,设O1D的中点为D1;
如图②,第二次将纸片折叠,使点B与点D1重合,折痕与BD交与点O2,设O2D3的中点为D2;
如图③,第三次将纸片折叠,使点B与点D2重合,折痕与BD交与点O3,设O3D2的中点为D3;
…
根据以上操作结果,回答下列问题:
(1)如图①,MN是折痕,求证:△DA′M≌△DCN;
(2)分别求出线段BO1、BO2、BO3的长,并直接写出第n次折叠后BOn的长(用含n的式子表示);
(3)如图②,第二次折叠时,折痕一定会经过点A吗?请通过计算判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.
(1)求该抛物线的解析式;
(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.
(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x一元二次方程x2+mx+n=0.
(1)当m=n+2时,利用根的判别式判断方程根的情况.
(2)若方程有实数根,写出一组满足条件的m,n的值,并求此时方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com