分析 首先设正比例函数解析式为y=mx,再把(1,4)点代入可得m的值,进而得到解析式;设一次函数解析式为y=kx+b,把(1,4)(3,0)代入可得关于k、b的方程组,然后再解出k、b的值,进而得到解析式.
解答 解:设正比例函数解析式为y=mx,
∵图象经过点A(1,4),
∴4=m×1,
m=4,
∴正比例函数解析式为y=4x;
设一次函数解析式为y=kx+b,
∵图象经过(1,4)(3,0),
∴$\left\{\begin{array}{l}{k+b=4}\\{3k+b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-2}\\{b=6}\end{array}\right.$,
∴一次函数解析式为y=-2x+6.
点评 此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数经过的点必能满足解析式.
科目:初中数学 来源:2017届广东省梅州市九年级下学期第一次月考数学试卷(解析版) 题型:单选题
下列图形中,既是轴对称图形又是中心对称图形的有( )
![]()
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{24}{5}$ | B. | $\frac{12}{5}$ | C. | 5 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com