【题目】如图,△ABC为等腰直角三角形,∠BCA=90°,AC=BC,点M、N在斜边AB上,且∠MCN=45°,试探究线段AM,,MN,BN之间的关系,并说明理由。.
科目:初中数学 来源: 题型:
【题目】如图,在数轴上每相邻两点间的距离为一个单位长度.点A、B、C、D对应的数分别是a、b、c、d,且d﹣3a=20.
(1)a= ,b= ,c= .
(2)点A以2个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点B到达D点处立刻返回,返回时,点A与点B在数轴的某点处相遇,求这个点对应的数.
(3)如果A、C两点分别以2个单位/秒和3个单位/秒的速度同时向数轴的负方向运动,同时,点B从图上的位置出发向数轴的正方向以1个单位/秒的速度运动,当满足AB+AC=AD时,点A对应的数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,A(m,0),B(n,0),C(﹣1,2),且满足式|m+2|+(m+n﹣2)2=0.
(1)求出m,n的值.
(2)①在x轴的正半轴上存在一点M,使△COM的面积等于△ABC的面积的一半,求出点M的坐标;
②在坐标轴的其它位置是否存在点M,使△COM的面积等于△ABC的面积的一半仍然成立,若存在,请直接在所给的横线上写出符合条件的点M的坐标;
(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;
(2)三角形ABC的面积为 ;
(3)以AC为边作与△ABC全等的三角形(顶点在格点上,不包括△ABC),可作出 个;
(4)在直线l上找一点P,使PA+PB的长最短.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O的弦CD与直径AB垂直于F,点E在CD上,且AE=CE.
(1)求证:CA2=CE CD;
(2)已知CA=5,EC=3,求sin∠EAF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,O是AB上一点, ⊙O与BC相切于点E,交AB于点F,连接AE,若AF=2BF,则∠CAE的度数是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,与的平分线交于点,过点作交于点,交于点,那么下列结论,①是等腰三角形;②;③若, ; ④.其中正确的有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),P为边AB上一点,∠CPB=60°,沿CP折叠正方形OABC,折叠后,点B落在平面内的点B′处,则点B′的坐标为( )
A. (2,2) B. (,2-) C. (2,4-2) D. (,4-2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com