【题目】如图,四边形ABCD为菱形,∠D=60°,AB=4,E为边BC上的动点,连接AE,作AE的垂直平分线GF交直线CD于F点,垂足为点G,则线段GF的最小值为____________.
【答案】3
【解析】
作辅助线,构建三角形全等,证明Rt△AFM≌Rt△EFN(HL),得∠AFM=∠EFN,再证明△AEF是等边三角形,计算FG=AG=AE,确认当AE⊥BC时,即AE=2时,FG最小.
解:连接AC,过点F作FM⊥AC于,作FN⊥BC于N,连接AF、EF,
∵四边形ABCD是菱形,且∠D=60°,
∴∠B=∠D=60°,AD∥BC,
∴∠FCN=∠D=60°=∠FCM,
∴FM=FN,
∵FG垂直平分AE,
∴AF=EF,
∴Rt△AFM≌Rt△EFN(HL),
∴∠AFM=∠EFN,
∴∠AFE=∠MFN,
∵∠FMC=∠FNC=90°,∠MCN=120°,
∴∠MFN=60°,
∴∠AFE=60°,
∴△AEF是等边三角形,
∴FG=AG=AE,
∴当AE⊥BC时,Rt△ABE中,∠B=60°,
∴∠BAE=30°,
∵AB=4,
∴BE=2,AE=2,
∴当AE⊥BC时,即AE=2时,FG最小,最小为3;
故答案为:3.
科目:初中数学 来源: 题型:
【题目】如图,点A、B都在反比例函数y=(x>0)的图像上,过点B作BC∥x轴交y轴于点C,连接AC并延长交x轴于点D,连接BD,DA=3DC,S△ABD=6.则k的值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动。今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.
(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;
(2)求扇形统计图B等级所对应扇形的圆心角度数;
(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】武胜县白坪—飞龙乡村旅游度假村橙海阳光景点组织辆汽车装运完三种脐橙共吨到外地销售.按计划,辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:
脐橙品种 | |||
每辆汽车运载量(吨) | |||
每吨脐橙获得(元) |
设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求与之间的函数关系式;
如果装运每种脐橙的车辆数都不少于辆,那么车辆的安排方案有几种?
设销售利润为(元),求与之间的函数关系式;若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:已知Rt△ABC的周长为30,斜边长c=13,求△ABC的面积.、
解法展示:设Rt△ABC的两直角边长分别为a,b,则a+b+c=①______,
因为c=13,所以a+b=②______,
所以(a+b)2=③______,所以a2+ b2+④_____=289.
因为a2+b2=c2,所以c2+2ab=289,
所以⑤______+2ab=289,所以ab=⑥______(第1步),
所以△ABC的面积=ab=×⑦______=⑧______(第2步).
合作探究:(1)对解法展示进行填空.
(2)上述解题过程中,由第1步到第2步体现出来的数学思想是______(填序号).
①整体思想;②数形结合思想;③分类讨论思想.
方法迁移:
(3)已知一直角三角形的面积为24,斜边长为10,求这个直角三角形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图.
请结合图象信息解答下列问题:
(1)慢车的速度是 千米/小时,快车的速度是 千米/小时;
(2)求m的值,并指出点C的实际意义是什么?
(3)在快车按原路原速返回的过程中,快、慢两车相距的路程为150千米时,慢车行驶了多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=BC,以BC为直径的⊙O与AC相交于点D,过点D作DE⊥AB交CB延长线于点E,垂足为点F.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径R=5,tanC=,求EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com