【题目】如图所示,AD是△ABC的中线,AE⊥AB,AF⊥AC,且AE=AB,AF=AC,AD=3,AB=4.
(1)求AC长度的取值范围;
(2)求EF的长度.
【答案】(1)2<AC<10;(2)EF= 6.
【解析】
(1)延长AD到M,使得AD=DM,连接MC,由“SAS”可得△ABD≌△MCD,可得AB=MC=4,∠BAD=∠M,由三角形三边关系可求解;
(2)由“SAS”可证△AEF≌△CMA,可得EF=AM=6.
(1)延长AD到M,使得AD=DM,连接MC,
∴AD=DM,AM=2AD=6,
∵AD是△ABC的中线,
∴BD=CD,
∵在△ABD和△MCD中,
,
∴△ABD≌△MCD(SAS),
∴AB=MC=4,∠BAD=∠M,
∵AM-MC<AC<AM+MC
∴2AD-MC<AC<2AD+MC
∴2<AC<10
(2)∵AB=AE,
∴AE=MC,
∵AE⊥AB,AF⊥AC,
∴∠EAB=∠FAC=90°,
∵∠FAC+∠BAC+∠EAB+∠EAF=360°,
∴∠BAC+∠EAF=180°,
∵∠CAD+∠M+∠MCA=180°,
∴∠CAD+∠BAD+∠MCA=180°,
即∠BAC+∠MCA=180°,
∴∠EAF=∠MCA.
∵在△AEF和△CMA中,
,
∴△AEF≌△CMA(SAS),
∴EF=AM=6
科目:初中数学 来源: 题型:
【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.
(1)求证:AD平分∠BAC.
(2)写出AB+AC与AE之间的等量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象经过点(-2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,-2)的上方,下列结论:
①b>0;②2a<b;③2a-b-1<0;④2a+c<0.其中正确结论是 _________(填正确序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,在△ABC中,AB=AC,AB的垂直平分线交BC的延长线于E,交AC于F,
∠A=50°,AB+BC=16cm,则△BCF的周长和∠EFC分别为多少?
(2)(生活应用题)某公司对一批某一品牌的衬衣的质量抽检结果如下表:
①从这批衬衣中任抽1件是次品的概率约为多少?
②如果销售这批衬衣600件,那么至少需要准备多少件正品衬衣供买到次品的顾客调换?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究函数的图象与性质,下面是探究过程,请补充完整:
()下表是与的几组对应值.
函数的自变量的取值范围是__________, 的值为__________.
()描出以上表中各对对应值为坐标的点,并画出该函数的大致图象.
()进一步探究函数图象发现:
①函数图象与轴有__________个交点,所以对应方程有__________个实数根.
②方程有__________个实数根.
③结合函数的图象,写出该函数的一条性质__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=﹣x2+bx+c的图象与x轴交于点A(﹣1,0),B(2,0),与y轴相交于点C.
(1)求二次函数的解析式;
(2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E的坐标,并求出四边形ABEC的最大面积;
(3)若点M在抛物线上,且在y轴的右侧.⊙M与y轴相切,切点为D.以C,D,M为顶点的三角形与△AOC相似,请直接写出点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com